发布日期:2022-10-09 点击率:80
1 引言
超短脉冲激光由于具有高峰值功率、窄脉冲宽度、高重复频率等特点,已经成为激光技术的一个重要研究方向。如今,在工业精细加工、精密测量、生物、医疗、光通信、军事等各个领域,超短脉冲激光都发挥着无以替代的作用。以掺镱光纤为增益介质的锁模光纤激光器近年来发展迅猛,特别是进入20世纪80年代后期,随着光纤技术的快速发展,以及大功率半导体激光器(LD)技术的不断突破,锁模光纤激光器,以其转换效率高、散热性能好、结构紧凑等优点成为了激光技术研究和应用的热点之一。
锁模光纤激光器从技术层面主要分为主动锁模和被动锁模两种。主动锁模光纤激光器通常在腔内采用调制器件,这会产生腔体的附加损耗,由于调制器件多为非光纤元件,其引入难以实现全光纤化集成,制约了该技术的全光纤化发展;同时,主动锁模容易受到外界环境,诸如温度变化,机械振动,以及超模噪声,谐振腔内偏振态起伏等因素的影响,需要很多复杂的技术来提高系统的稳定性,结果是大大增加了系统的复杂性并提高了激光器的成本。反观被动锁模光纤激光器,由于结构简单、性能稳定、便于集成等优点受到国内外很多科研机构的广泛关注,并在通信、医学、加工、传感和探测等众多领域得到了越来越广泛的应用。
被动锁模光纤激光器主要通过采用非线性光学环形镜,非线性偏振旋转和基于半导体可饱和吸收镜等机制来实现。其中,基于半导体可饱和吸收镜(SESAM)的被动锁模技术由于具有设计灵活、系统稳定、自启动等诸多优点,同时,半导体可饱和吸收镜在制备过程中可灵活控制调制深度、恢复时间、饱和通量等关键参数,并且根据需要可加工集成在光纤端头上,便于全光纤化,因此,该类型被动锁模光纤激光器在实际应用领域被广泛关注。
本文采用主振荡功率放大(MOPA)结构,利用基于半导体可饱和吸收镜的锁模光纤激光器作为种子源,通过三级放大实现了平均功率74.3W的被动锁模光纤激光器。实验中分析了种子源的不同状态,以及这些状态对放大级的影响,同时,通过重复频率倍增系统,在增加重频的同时,加之对放大级光纤长度的优化,减小了非线性效应对输出功率的影响。
2 实验方案
图1是实验结构示意图。整个激光器由五部分组成:被动锁模光纤种子源、预放大器、重复频率倍增系统、一级功率放大器、二级功率放大器。
该激光器的种子源是基于半导体可饱和吸收镜(SESAM)线性腔结构的被动锁模光纤激光器。种子源结构示意图如图2所示。泵浦源为带尾纤的975nm半导体激光器,最大泵浦功率约550mW,其驱动源带有温控系统,可保证输出波长的稳定性为了防止泵浦源被回光损伤,在其末端熔接一个泵浦保护器。泵浦保护器的另一端与光纤布拉格光栅(FBG)熔接,泵浦光经光栅(FBG)注入谐振腔。该光栅(FBG)中心波长1063.4 nm,3dB带宽0.15nm,反射率95%,作为腔内的一个反射镜。光纤分束器OC一端连接光纤光栅,另一侧70%分光端连接增益光纤,用于将泵浦光耦合进增益光纤,30%端用于激光输出;增益光纤采用了2m长的高浓度单模掺镱光纤,其在976nm处的吸收系数为1200dB/m,该光纤的另一端与SESAM的尾纤连接,实现谐振腔的闭合。根据SESAM的特性,腔内的强激光脉冲经尾纤汇聚在SESAM上,由于其对强脉冲吸收率低,反射后沿原路返回进增益光纤,弱激光脉冲由于SESAM吸收而被抑制,如此多次循环,强脉冲不断被放大并最终输出高强度窄脉宽脉冲序列。实验中采用的是BATOP公司生产的吸收层为多量子阱结构的SESAM,高反区1010 ~ 1120nm,反射率大于40%,调制深度30%,饱和通量30μJ/cm2,非饱和吸收损耗15%,恢复时间为9 ps。OC输出端连接的偏振控制器是一个光纤型偏振控制器件,其作用是为了调节激光的偏振态;之后连接一段0.55m的掺镱光纤用于对多余的泵浦光进行吸收,末端连接的光纤隔离器(ISO)是防止放大级的回光损伤种子源。
预放大器的增益介质采用与种子源相同的高浓度单模掺镱光纤,长度2.5m。泵浦源同样采用550mW带尾纤的975nm半导体激光器。为了防止光路中反向光打坏泵浦源,在泵浦源后熔接泵浦保护器。泵浦光通过WDM耦合入增益光纤,对种子光进行放大。在预放大级末端熔接光纤隔离器,防止回光损伤光路。之后的重频倍增系统由分束器和无源光纤组成,其主要原理是通过精确计算脉冲间隔和延迟时间使得一个脉冲周期内的脉冲数量得以增加。
功率放大器分两级结构,一级功率放大器采用的是Nufern公司生产10/130双包层掺镱光纤,泵浦源采用OCLARO公司生产的一只25W,中心波长975nm的半导体激光器;通过(2+1)×1合束器耦合入增益光纤,光纤的输出端熔接大功率光纤隔离器。二级功率放大器采用的是Nufern公司生产25/250双包层掺镱光纤;为了提高功率,泵浦源采用了4只OCLARO公司生产的25W,中心波长975nm的半导体激光器,它们通过(6+1)×1光纤合束器耦合入增益光纤。增益光纤的末端熔接一段无源光纤,在熔接点出制作了泵浦倾泻装置,滤除未被吸收的多余的泵浦光;最终输出端切8°斜角输出。
下一篇: PLC、DCS、FCS三大控
上一篇: 索尔维全系列Solef?PV