当前位置: 首页 > 工业控制产品 > 自动化控制 > 激光器

类型分类:
科普知识
数据分类:
激光器

高能量激光器:镀膜为何首选溶胶凝胶化学法?

发布日期:2022-10-09 点击率:59


光学薄膜是所有光学器件不可或缺的功能材料,没有高质量的光学薄膜,光学仪器甚至无法使用。由于溶胶-凝胶膜具有耐激光损伤阈值高的突出优点,经过二十多年的发展,溶胶-凝胶化学法成为了高能量激光器光学系统的首选镀膜方法。


传统物理法与溶胶凝胶化学法


传统的光学薄膜制备方法是以物理气相沉积(PVD)为核心的一系列物理方法,已有一百多年的发展历史,其理论、设备、软件均已非常成熟,市场占有率大。物理法镀膜精度高,适合小口径平面元件多层镀膜,设备投资大,维护费用高,是重资产项目。

目前,物理法光学薄膜基本是一个封闭的技术领域,从科学的角度,学术外延不广。而化学法光学薄膜得益于纳米材料和新能源技术的迅猛发展,正面临源源不断的新需求和新挑战,潜力巨大,是一个值得大力投入的方向。

化学法分为化学气相沉积和液相外延两种。理论上,化学气相沉积法可以做到的薄膜,液相外延法均可以做到。液相外延法主要指溶胶凝胶法(Sol-Gel):将光学基片以某种方式与预配好的镀膜液(胶体或溶液)接触并渐次通过液体区,利用溶剂挥发速度和液体流动速度的匹配,在基片表面形成一层不能够流动的沉积层。

溶胶凝胶法镀膜精度不如物理法,但适合大口径平面或异形元件镀膜,设备投资少,维护费用低,是轻资产人才密集型项目。溶胶凝胶法与物理法二者互为补充,各有优缺点,一旦结合,可能创新出性能优越、单一方法难以制备的薄膜材料。


溶胶凝胶化学法成为首选


溶胶凝胶化学是古老的胶体化学的一个现代分支。自从几十年前有机硅醇盐的诞生以来,以二氧化硅颗粒的硅醇盐路线合成为起始和代表的溶胶-凝胶化学把古老的胶体化学推动到了崭新的发展阶段,溶胶-凝胶化学就此展开其众多的研究分支和丰富多彩的应用领域。


溶胶本身包含“由溶液到胶体”的意思,即从单相的溶液体系通过一定的化学反应逐渐生成胶体粒子,从而形成胶体分散体系,如果化学反应持续进行,胶体粒子就会不断长大直至溶胶失去流动性形成凝胶,或者,通过外加干涉的办法强行凝胶化,这就是制备光学薄膜所采用的路线。


虽然溶胶-凝胶化学是一个应用性很强的研究领域,但鉴于其化学基础研究涉及溶液中的化学反应动力学、胶体成核理论、胶体粒子生长理论以及多相体系的化学反应,是一个相当复杂的过程,同时由于胶体粒子尺寸处于纳米尺度,在微观结构表征方面也存在相当的难度,所以研究溶胶-凝胶化学基础又是极有挑战性的工作。

溶胶-凝胶法用于镀制光学薄膜最早出现在上世纪六十年代末,St?ber等人利用TEOS在乙醇溶剂中在氨水催化下的水解和缩聚制备了球型单分散的SiO2颗粒,并由此制备了第一个减反射膜。之后不久,1969年,Schroeder就单层和多层溶胶-凝胶薄膜发展了一套薄膜物理。在1994年的《Laser Focus World》第九期,Thomas V. Higgins发表了一篇关于光学薄膜及薄膜光学的简单回顾。从Fresnel提出著名的物理光学Fresnel方程,到Maxwell提出电磁理论,Lorentz提出电磁辐射的偶极模型,直至William T. Doyle把Fresnel方程用电磁场理论重新表达,薄膜光学形成了统一的理论体系。但此时,溶胶凝胶法在光学薄膜领域并未占有多少分量。

随着高能量激光器的出现,同时对高功率超短脉冲激光的追求,相关激光物理现象的研究也需要更高能量的激光,而高能量激光具有极大的破坏力,因此对光学元件耐激光损伤能力的提高就非常迫切。物理法制备薄膜最大的缺点就是抗激光损伤能力差,这极大地限制了其在高能量激光器光学元件上的应用,此时溶胶-凝胶法镀膜作为一种可能的替代技术获得了较大发展。溶胶-凝胶法成为高能量激光器光学系统的首选镀膜方法。


溶胶凝胶法镀膜工艺


作为液相外延法,溶胶凝胶镀膜可以使用多种镀膜工艺,包括提拉法(dip-coating)、旋涂法(spin-coating)、喷涂法(spray-coating)、弯月面法(meniscus-coating)等方法。无论采取哪种镀制技术,薄膜的成膜机理是一致的,在制备过程中要严格控制沉积参数和环境条件。

高能量激光器:镀膜为何首选溶胶凝胶化学法?

由左至右依次为:喷涂法、弯月面法、旋涂法、提拉法示意图

具体镀制方法的选择主要取决于基底尺寸及其几何形状、镀膜要求(单面或双面)、镀膜成本以及前驱溶胶的寿命等:

弯月面法需要的溶胶量较少,适合中等尺寸平面基片上沉积单面多层薄膜或者双面异质薄膜,没有重力对流体的影响,镀膜均匀性非常好。

旋涂法通过改变转速来控制膜厚,需要的溶胶量最少,但只能获得单面薄膜,适用于小尺寸元件镀膜。

提拉法溶胶用量较大,对于形状不规则或大面积基片双面镀膜具有较强的适应性,通过改变提拉速度可以调节薄膜的厚度。


从最早的硅醇盐或金属醇盐水解的溶胶凝胶法开始,逐渐衍生出很多相关的湿化学方法,都可以用来制备光学薄膜,以适用于不同的要求。比如,非水体系溶胶凝胶法、水热或溶剂热法、溶胶-溶剂热法、沉淀-重分散法等等。应用这些方法可以制作品种繁多的光学薄膜,比如,非线性光学晶体保护膜,用于固体激光器的三波长减反膜,疏水疏油减反膜,用于无色差镜头的MgF2纳米晶减反膜,用于光伏、光热太阳能器件、平板显示等的宽谱带减反射膜,用于柔性显示屏的有机无机杂化减反膜,VO2隔热膜,高反膜等等。

作为一种只有五十年历史的薄膜制备方法,以溶胶凝胶法为核心的液相外延法已经在各行各业得到应用,在光学薄膜领域的应用也会越来越受到重视。可以展望,未来的柔性显示技术、分布式光热电站、手机显示屏等很多设计光学性能要求的工业产品都需要化学法镀膜。

下一篇: PLC、DCS、FCS三大控

上一篇: 索尔维全系列Solef?PV

推荐产品

更多