发布日期:2022-10-09 点击率:55
【导读】虽然MOSFET的芯片和封装不断改进,但是它们是否能有效的应用于电源产品依然面临着不小的挑战。除了器件结构和加工工艺,MOSFET的性能还受其他几个周围相关因素的影响:如封装阻抗、印刷电路板(PCB)布局、互连线寄生效应和开关速度等。
事实上,真正的开关速度取决于其他几个因素,例如切换的速度和保持栅极控制的能力,同时抑制栅极驱动回路电感带来的影响。同样,低栅极阈值还会加重Ldi/dt问题。根据具体应用建立FET性能模型并采用电子表格记录数据的经验丰富的设计人员,亦未能从熟悉的模型中获得虽然MOSFET的芯片和封装不断改进,但是它们是否能有效的应用于电源产品依然面临着不小的挑战。除了器件结构和加工工艺,MOSFET的性能还受其他几个周围相关因素的影响:如封装阻抗、印刷电路板(PCB)布局、互连线寄生效应和开关速度等。满意的结果。
正因为了解电路中晶体管的性能很重要,所以我们将选用半桥拓扑。这种拓扑是电力电子装置最常用的拓扑之一。这些例子重点介绍了同步压降转换器——一个半桥拓扑的具体应用。
1、共源极电感效应
图1半桥电路
图1为具备杂散电感和电阻(由封装键合线、引线框以及电路板布局和互连线带来)等寄生效应的半桥电路。共源电感(CSI)倾向于降低控制FET(高边FET)的导通和关断速度。如果与栅极驱动串联,通过CSI的电压加至栅极驱动上,可使FET处于导通状态(条件:V = -Ldi/dt),从而延迟晶体管的关断。这也会增大控制FET的功耗,如图2所示。
图2 功耗曲线
更高的功耗会导致转换效率降低。另外,由于杂散电感,电路出现尖峰电压的可能性很高。如果这些尖峰电压超过器件的额定值,可能会引起故障。
为了消除或使这种寄生电感最小化,设计人员必须采用类似无引脚或接线柱的DirecFET等封装形式,并采用使互连线阻抗最小化的布局。与标准封装不同,DirecFET无键合线或引线框。因此,它可极大地降低导通电阻,同时大幅降低开关节点的振铃,抑制开关损耗。
2、缓和C dv/dt感应导通
影响性能的另一个因素是C dv/dt感应导通(和由此产生的击穿)。C dv/dt通过栅漏电容CGD的反馈作用(引起不必要的低边FET导通),使低边(或同步)FET出现栅极尖峰电压。
实际上,当Q2的漏源极的电压升高时,电流就会经由栅漏电容CGD 流入总栅极电阻RG。因此,它会导致同步FET Q2的栅极出现尖峰电压。当该栅极电压超出规定的阈值时,它就会被迫导通。典型同步压降转换器拓扑中,同步FET Q2在这种工作模式下的主要波形。
若要准确地确定低边或同步MOSFET Q2的这种现象带来的功耗,需要对其漏源电压VDS_Q2 进行一段时间的钳位控制。在钳位控制时段,其功耗约为:
在这个等式中,Vcl 代表VDS_Q2 的钳位电压值;fs代表开关频率;Irrm 代表峰值反向恢复电流;tcl 代表反向恢复电流由Irrm 降至零所需的时间。由上式可以看出,C dv/dt感应损耗是Vin、dv/dt和开关频率的函数,反过来,它也会受驱动速度、栅极电荷Qg、反向恢复电荷Qrr和布局的影响。因此,要想抑制这种不必要的导通,需要选择具备低荷比(QGD/QGS1)的适用同步MOSFET Q2。在QGD/QGS1中,QGD代表栅漏米勒电荷,QGS1代表栅极电压达到阈值之前的栅源电荷。
尽管降低CDS 或增大CGS可降低C dv/dt感应电压,但Q2的C dv/dt感应导通还取决于漏源电压 VDS-Q2 和阈值电压Vth。由于栅极阈值电压会随着温度的升高而降低,因此这个问题在温度升高情况下会进一步恶化。因此,低阈值FET对C dv/dt问题尤其敏感。
在实际应用中,要想评估同步MOSFET Q2,需要了解栅极电容的栅极电荷性能。因此,聪明的办法是调查C dv/dt感应导通,这需要查看累积的米勒电荷。为避免Q2错误导通,设计人员必须确保当漏源电压VDS-Q2 达到输入电压时,它必须比栅源电容的总电荷低。
下一篇: PLC、DCS、FCS三大控
上一篇: 索尔维全系列Solef?PV