发布日期:2022-04-17 点击率:54
【导读】由于在WiFi手机普及之前,已经有大量建设好的WLAN网络,大部分都是基于PC、笔记本的特点搭建的,所以不可能专门为WiFi手机搭建一套WLAN网络。因此,如何与品牌众多、系统各异的手机保持良好的兼容性,对WLAN厂商而言是很大的挑战。本文主要探讨WLAN AC/AP设备如何基于手机类终端的特点,与其进行兼容性测试,保证WLAN网络对手机有良好的支持。
测试中应涵盖主流手机厂商及其操作系统。
涵盖的常用手机操作系统包括:Android(安卓),Apple OS(苹果),Symbian(塞班),Windows Mobile,Palm系统,Blackberry系统(黑莓)等。
涵盖的手机厂商包括:Nokia,Apple,Motorola,HTC,Samsung,Palm,Blackberry,Lenovo,SonyEricsson等等。
另外实际测试显示,Apple iPad和iPhone4的WLAN功能基本一致,可将iPad纳入测试范围。
一.基本接入测试
测试目的:明晰每款手机对WLAN基本功能的支持情况;测试与H3C AC/AP的配合情况。
依据IEEE 802.11-2007、IEEE 802.11n-2009协议,对WiFi手机接入AC/AP的基本过程进行测试。本次测试以iPhone 4/iPad(Apple OS系统)和HTC A8180(Andriod v2.2系统)为例。
1.支持的射频模式(802.11a/b/g/n)
IEEE 802.11工作组先后定义了802.11a/b/g/n标准,所以需要对手机支持的WLAN射频模式、以及与AC/AP的适配情况进行测试。如果同时支持多模式,则还需测试在不同模式间的切换(如11g切换到11n)。这是最基本的测试,也是后续测试的基础。测试结果如下:
2.多速率支持
802.11-2007定义了不同射频模式下允许的速率集,规定了各类无线帧的传输速率。如所有控制帧和广播帧都使用基本速率集来发送,单播的数据帧、管理帧使用双方都支持的任何一个速率来发送等。
多速率支持需要测试手机和AC/AP配合时的速率协商过程,和进行通信时不同无线帧的速率选择。测试结果如下:
3.WMM能力
WMM是802.11e标准的子集,也是业界通用的WiFi标准,提供了基本的无线QoS解决方案,支持语音、视频等多媒体业务在无线局域网中的应用,可以实现高速突发数据和流量分级。WMM能力测试可以确定手机是否支持WMM能力,并且与AC/AP的配合情况。
测试结果如下:
4.省电功能(power-save)
省电(power-save)是WLAN一个特色功能,无线终端可以选择在没有报文传输时关闭无线射频来节省电池电力(sleep状态),并在有报文时醒来接收或发送(active状态)。
在AC/AP与手机的配合测试中,这是一个重要测试项。因为省电功能有Legacy/U-APSD等多种实现方式,如果配合不够默契,会导致持续丢包,严重影响用户体验。
测试结果如下:
从测试结果可以看出:不同手机的休眠行为存在很大差异,AC/AP需要很好的与之兼容。
5.11g保护测试
由于802.11g和11b使用的调制方式不同(OFDM和CCK),802.11g可以兼容802.11b,但是802.11b不能识别 802.11g的帧,这样会造成冲突。802.11协议中规定了对于11b设备的保护机制,包括CTS-Self和RTS/CTS两种。本测试在于确定手 机是否支持11g保护功能和采用的保护机制,并和AC/AP的适配性。
测试结果如下:
6.802.11n能力测试
此测试项针对支持802.11n的手机,测试其11n基本功能。802.11n包含的测试项众多,这里需要主要关注以下几点:
11n模式:确定手机支持SISO(Single In-Single Out,单入单出)还是MIMO(Multiple Input-Multiple Output,多入多出),即采用的是单天线还是多天线,以及支持的空间流数目。
20MHz/40MHz信道及切换:11a/b/g使用20MHz的频带宽度进行通讯。11n支持将两个20MHz的频带捆绑为一个通讯频带(称为Channel bonding),可以实现将吞吐提高一倍(实际高于2倍)。这两个频带将一个为主,一个为辅。
Short Guard Interval(Short GI):由于信号沿多条路径传播,导致在接收侧最新接收的信息符号可能会和上一个接收过程尚未结束的信息符号进行碰撞,从而导致ISI干扰。为此,802.11a/g标准要求在发送信息符号时,必须要保证 在信息符号之间存在800 ns的时间间隔,这个间隔被称为Guard Interval(GI)。11n仍然使用缺省使用800 ns GI,但当多径效应不是严重时,可以将该间隔配置为400 ns,可以将吞吐提高近10%。
frame Aggregation(帧聚合,分为A-MSDU和A-MPDU):以前802.11a/b/g的帧处理存在比较大的开销,比如 Preamble,FCS,等待ACK的时间等,影响了MAC层的操作效率。帧聚合技术通过将多个帧放在一起一次发送,从而减少了开销,减少了帧碰撞机 会,提高了MAC效率,根据支持的聚合帧数量和长度,可极大提升吞吐量。
Block Ack:按照11n协议,对于MSDU聚合帧,可以作为一个帧来确认,但对于MPDU聚合帧,需要对构成该聚合帧的每个帧分别进行确认。为了提高MAC层效率,协议定义了Block acknowledgement机制,可以通过一个BlockAck帧来实现对整个MPDU聚合帧的确认。frame Aggregation + Block Ack可以将文件传输等流量的吞吐提高100%。
11n Protection:11n协议定义了4种运行模式:no protection,non-member protection,20MHz protection,non-HT mixed。定义4种模式是为了11n的AP和终端能根据网络状况合理选择速率,提供向下兼容并减少帧冲突。
测试结果如下(由于HTC A8180不支持11n,只以iPhone 4为例):
从测试结果可以看出:尽管iPhone 4和iPad支持802.11n,但由于是单天线只支持SISO(即空间单流),所以最高协商速率只有65Mbps,与PC类无线网卡普遍采用的2x2 MIMO所能达到的300Mbps相差很大。
二.认证和加密测试
在WLAN网络中采用认证和加密机制,有利于提高网络安全性,保护用户数据免遭窃取。H3C AC/AP全面支持各类无线认证和加密技术。本项测试目的:1、明晰每款手机对认证和加密的支持情况;2、测试与H3C AC/AP的配合情况。
由于目前已建设完的一些WLAN网络部署了Portal这类原本设计用于PC终端的认证方式,其原理是通过对PC用IE/Firefox等浏览器打开 的网页进行HTTP重定向,转到Portal服务器进行认证。所以手机类终端连上WLAN网络后是否能完成Portal认证,是与此类网络兼容性测试的重 要项目。
此外还有一些WLAN网络采用了混合加密等高灵活性的设置,是否能与手机类终端适配,也需要关注。
本测试以iPhone 4/iPad为例。
1.认证测试
根据认证服务器所在位置的不同,认证方式可以分为以下两种:
远程认证:AC作为NAS设备,将终端的认证报文转发给远程的服务器进行集中认证。
本地认证:H3C AC支持作本地EAP Server、本地Portal Server。可以直接在AC上完成dot1x-EAP和Portal的认证,无需安装其他服务器。
常用的认证的类型包括Preshared key,Dot1x-PEAP,Dot1x-TLS,WAPI,Portal等。
测试结果如下:
从测试结果可以看出:对于原有使用Portal认证的WLAN网络,iPhone 4/iPad使用其自带的Safari浏览器可以很好的支持,与H3C AC/AP适配性良好。
2.加密测试
随着WLAN的发展,支持的加密方式也从最初802.11定义的WEP,发展到WiFi联盟的TKIP,到目前802.11i定义的CCMP和中国自有知识产权的WAPI多种方式并存的局面。
AC/AP与手机对加密的配合,关系到密钥的分发和管理,以及数据能否正确加解密。
测试结果如下:
从测试结果可以看出:除了WEP128,iPhone 4对各种加密方式均能很好的支持,在采用混合加密的H3C WLAN网络中也能很好的相互适配。
[page]
3.密钥更新
在高安全性要求的WLAN网络中,常常配置密钥更新功能来定期更新用户密钥,减少密钥被破解的风险。802.11i中定义了两种密钥更新:单播密钥更新(Pairwise Transient Key,PTK)和组播密钥更新(Group Temporal Key,GTK)。WAPI协议中定义了三种密钥更新:基密钥更新(base Key,BK),单播会话密钥更新(Unicast Session Key,USK)和组播会话密钥更新(Multicast Session Key,MSK)。
在密钥更新过程中,手机终端应与AC/AP保持连接,不应发生掉线的现象。
测试结果如下:
从测试结果可以看出,iPhone 4的GTK更新报文并不符合802.11i协议的规定,对group message2的key length域错误的进行了赋值。H3C设备由于对此采用了宽进严出的原则,可以很好的进行兼容。这一点也体现出手机终端兼容性测试的重要性。
三.实际传输速率测试
限于WLAN协议自身的开销和WLAN共享带宽的特点,WLAN终端和AC/AP间实际传输数据的速率和协商的速率会相差很大。以802.11g协商的最高速率54Mbps为例,实际PC下载速率往往难以超过30Mbps甚至更低。
由于手机无法像PC一样安装类似IxChariot的精确性能测试工具,大多数时候只能采用手机和PC间通过WLAN进行文件共享传输的方式,近似评估实际传输速率。
以iPad下载文件为例,测试结果如下(注:考虑实际环境,此项测试数据仅作参考):
从测试结果可以看出,手机类终端从相同WLAN网络下载的速率远低于PC类终端,表明性能的瓶颈主要在手机自身的处理能力上。但考虑使用场景,这个速率已经能满足其使用要求。手机类终端的往往是通过WLAN上网浏览网页,使用即时通信工具(如QQ),或者是观看视频等,这类应用的流量很难超过 1Mbps。
四.漫游测试
在WLAN网络中,每个AP的覆盖范围是有限的,当手机移动时,很可能会从一个AP的覆盖范围进入到另一个AP的覆盖范围,这个过程中就会需要到漫游技术来保障无线连接的连续性。相对于PC类终端,手机具有更强的移动性,对WLAN网络漫游的要求也更高。
漫游有多种形式,根据漫游速度的不同,可分为以下两种:
非快速漫游:即终端从一个AP下线之后在另一个AP重新上线。如果有认证,例如Dot1x(WPA)认证,必须在漫游后重新认证。非快速漫游时终端会出现的短暂掉线。
快速漫游:WLAN网络和终端都支持Dot1x(RSN)的方式,并且终端在漫游时发往新AP的重关联帧中携带PMKID信息,就会进入快速漫游流程,此 时不需要重新认证,直接进行密钥的协商,快速漫游过程不会出现终端的掉线情况。H3C AC/AP实现快速漫游切换的时间小于50ms,用户不会感知。
根据漫游的目的地的不同,可分为以下两种:
AC内漫游(Intra-AC roaming):一个无线终端从AC的一个AP漫游到同一个AC内的另一个AP中,即称为AC内漫游。如图1所示。
图1 AC内漫游
AC间漫游(Inter-AC roaming):一个无线终端从AC的AP漫游到另一个AC内的AP中,即称为AC间漫游。如图2所示。
图2 AC间漫游
需要注意的是,漫游的主动发起方是终端,它是漫游的主导因素。终端按照自身的设定判断什么条件下漫游,AP对此无法干预。如果有的终端对漫游发起条件判断不准确,在原AP信号已经很差的情况下还不发起漫游接入信号更好的新AP,那么就会导致报文传输速率不断下降,用户体验变差。同样,如果终端发起漫游时AC/AP设备与之配合不够默契,也会影响到用户体验。
以iPhone 4为例,测试结果如下:
五.实际业务体验测试
任何底层测试的目的都是为了获得更好的实际业务体验。手机类终端有丰富的应用业务,连接上WLAN网络进行业务体验测试必不可少,通过本项测试可了解手机的典型应用。
以iPhone 4为例,测试结果如下:
从测试结果可以看出,H3C AC/AP与iPhone 4配合默契,各种应用体验良好。美中不足是iPhone 4 Apple OS系统由于自身限制,不支持格式的视频播放。
六.结束语
本文介绍了WLAN接入设备(AC/AP)与手机终端进行兼容性测试的基本思路和测试方法。实际上,还有很多可以测试的其他项目,比如手机显示的 WiFi信号强度与协商速率的关系,手机蓝牙功能开启时对WiFi连接的影响等等。在此类兼容性测试中,一是要保证手机终端类型的多样性,二是要结合手机 终端自身特点和应用进行测试,来保障为用户提供良好的体验。
下一篇: PLC、DCS、FCS三大控
上一篇: 高阶调制,GaN技术克