当前位置: 首页 > 传感测量产品 > 工业传感器 > 光电传感器

类型分类:
科普知识
数据分类:
光电传感器

光电效应 传感器:3种光电效应,解读光电传感器核心工作原理

发布日期:2022-10-09 点击率:54

光电效应 传感器:3种光电效应,解读光电传感器核心工作原理

描述
在光的感应和检测中,尽可能保持光不扩散、光能量不损耗是非常重要的一环,这对于传感器的精度有着非常大的影响。所以,光纤传感器、激光传感器和CMOS可见光传感器等精度更高的光电传感器相继被研发出来,并成为现在甚至未来好几年的热门光电传感器。
光电传感器指采用光电元件来检测物体的有无和表面状态的变化等的传感器,一般由发送器、接收器和检测电路三部分组成,工作原理是先把被测量的变化转换成光信号的变化,再将光信号的变化转换成电信号的变化。
故光电传感器的本质是通过把光强度的变化转换成电信号的变化来实现控制。
比如光传感器的应用条形码扫描笔,就是通过检测条形码反射的光强度变化来识别条形码。在条形码扫描笔里,发光二极管就是光电传感器的发送器,光敏三极管是接收器,而把电脉冲信号进行放大、整形等处理的电路则为检测电路。
140年,光电传感器的“改朝换代”发展史
源起:白炽灯传感器
1879年,爱迪生发明了白炽灯,而最早的光电传感器用的就是白炽灯作为发射光源。一个小的金属圆柱形设备里面有一个白炽灯作为光源,同时还带有一个校准镜头,可将光聚集射向接收器,再通过接收器出电缆连接到一个真空管放大器上,这就是早期的白炽灯传感器,也是光电传感器的雏形,可用于检测物体的有无。
发展:LED取代白炽灯
19世纪60年代,LED(发光二极管)开始出现,人们发现用LED做的光电传感器性能比白炽灯传感器要优质可靠,因此LED开始取代白炽灯。
相比于白炽灯,LED的优势主要在于以下4点:
1、寿命更长。白炽灯发亮的原理是高温钨丝产生光辐射,但钨丝温度越高,升华越快,故白炽灯的寿命较短;而LED是固态的,不存在升华问题,帮能延长传感器的使用寿命。
2、能耗更低。LED发出的光能只相当于同尺寸白炽灯所发出光能的一部分。
3、速度更快。LED能够以非常快的速度来开关,开关速度可达到KHz。
4、LED体积小,且抗冲击和抗震性能也更好。
进化1:非调制的LED光电传感器退出历史舞台
1970年,人们将接收器的放大器调制到发射器的调制频率,让传感器只能对某种频率振动的光信号进行放大,以此大大加快了LED光电传感器的开关速度。
另外,对于LED光电传感器来说,调制本身就是非常有必要的,因为一个LED发出的光能是很小的,所以要经过调制才能使其能量变得很高,从而改进光电传感器的设计,增大了检测距离,扩展了光束的角度,提高传感器的准确性以及对环境的抗干扰能力。
于是,1980年,非调制的光电传感器逐步退出历史舞台。
进化2:高效可见光LED出现,革新色标传感器
如果说调制的LED传感器提高了光电传感器的开关性能,那么高效可见光LED出现,就是革新了色标传感器。
LED能发射多种光,包括红外光、绿光、红光、蓝光或白光等,不过早期LED发出的光都是相对弱的,其中红外光LED的效率最高,但对于那些需要区分不同颜色的光电传感器来说(比如色标传感器),不可见的红外光不适合,它们需要的是可见光源。
因此,早期LED并不适用于色标传感器,当时的色标传感器都是用白炽灯作光源,直到后来发明了高效的可见光LED。
以发光效率为标志的LED发展历程
从可见光LED的发展历程可发现,1985年后,采用AlGaInP、SiC和GaN等材料的LED逐渐出现,这些材料禁带宽度大,还能通过调整掺杂组分来改变带隙宽度,从而得到超高亮度的可见光LED。
现在,多数的色标传感器都是使用经调制的各种颜色的可见光LED发射器。
展望:光纤传感器、激光传感器和CMOS可见光传感器
在光的感应和检测中,尽可能保持光不扩散、光能量不损耗是非常重要的一环,这对于传感器的精度有着非常大的影响。所以,光纤传感器、激光传感器和CMOS可见光传感器等精度更高的光电传感器相继被研发出来,并成为现在甚至未来好几年的热门光电传感器。
3种光电效应,解读光电传感器核心工作原理
没有光电效应,就没有光电传感器。
光电传感器之所以能把光信号转换成电信号,检测物体的有无和表面状态的变化,主要靠的是各种光电元件,包括光敏电阻、光敏二极管、光敏三极管等,这些光电元件一般作为光电传感器的接收器,工作原理是光电效应:
当物体受到光线照射时,其内部的电子吸收了光子的能量后改变状态,自身的电性质也会发生改变。
光电效应的本质是光变致电,光电转换。
光电效应分为外光电效应和内光电效应,其中内光电效应又分为光电导效应和光生伏特效应,光电导效应需要给电路加电压,而光生伏特不用。这三种光电效应的区分很简单,就是在光线作用下,它们电子的变化是不一样的。
制图:传感器专家网
①在光线作用下,电子逸出物体表面,物体的伏安特性发生了变化,这是外光电效应,如光电管,光电倍增管等。
外光电效应
②吸收光线能量后,电子不逸出,物体电阻率发生明显变化,这是光电导效应,如光敏电阻,光敏晶体管等;
光电导效应
③吸收光线能量后,电子不逸出,并在物体内部自建场里产生光电压,这是光生伏特效应,如光敏二极管,三极管和光电池等。
光生伏特效应
通过以上光电元件,我们可以把测量物的光变化转化成电变化。
比如利用光电管(外光电效应)作为接收器,制成光控制电器,可用于自动控制,进行自动计数、自动报警、自动跟踪等。当光照在光电管上时,光电管电路中产生电光流,经过放大器放大,使电磁铁磁化,然后把衔铁吸住;当光电管上没有光照时,光电管电路中没有电流,电磁铁与衔铁分离。
再比如最常见的光敏二极管(光电导效应)。光电传感器光敏二极管的外型与一般二极管一样,只是它的管壳上开有一个嵌着玻璃的窗口,以便于光线射入,为增加受光面积,PN结的面积做得较大。当无光照时,它的反向电流很小,电路截止;当有光照时,载流子被激发,产生光电载流子,电路接通。
总得来说,光电效应让光电传感器拥有了感知光变化的能力,并把光信号变化转换成电信号变化,进行数据处理与应用。
4种结构类型,光电传感器检测方式的大不同
光电传感器具有精度高、反应快、非接触、灵活、检测距离远等优点,广泛应用在检测和控制中,可检测物体有无、光信号强弱、光的颜色等参数,然后进行控制,常见的有开关控制、自动计件、颜色分拣等。
根据检测方式的不同,光电传感器可分为漫反射型、反射板型、对射型和距离型,不同的类型对应不同结构的光电传感器。
制图:传感器专家网
①漫反射型:漫反射型光电开关
漫反射型光电开关,发射器和接收器装在一起,当开关发射光束时,目标产生漫反射,当有足够的组合光返回接收器时,开关状态发生变化。
漫反射型是安装最简单方便,但作用距离最短,检测也最不稳定。
②反射板型:反光板型光电开关
反光板反射式光电开关,把发光器和收光器装入同一个装置内,并在它的前方装一块反光板,利用反射原理完成光电控制作用。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。
反射板型光电传感器可检测透明物体和光亮度高的物体,作用距离较长,且安装方便,检测稳定。但当反光镜有灰尘时,检测精度会降低。
③对射型:对射型光电传感器
对射分离式光电开关,由一个发光器和一个收光器组成,若把发光器和收光器分离开,就可使检测距离加大,故它的检测距离可达几米乃至几十米。使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。
对射型光电传感器是检测精度最高的,距离也可以很远,但是安装不方便,占用空间较大,且不能检测透明和体积小的物体。
④距离型:扩散反射型光电开关
扩散反射型光电开关,它的检测头里装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是找不到的。当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。
距离型光电传感器的发射器是点发射,但接收器是面接收,所以它可以允许被测物有一个更大的偏转角度。
什么意思呢?
从上面的原理图,我们可以发现距离型光电传感器设定的检测距离是一定的,因此我们可以设定一个固定的发射光——反射光角度。当有检测物经过时,检测到的反射光与被检测物返回的反射光之间的角度与我们设定的角度肯定是不一致的,帮传感器能检测出物体的存在。即除了设定好的那个角度是判定为无物体的,其他所有角度都会判断为有物体,被测物的偏转角度变大,可大大提高传感器的精确性和灵敏度。
5种应用示例,光电传感器的广泛用途
接下来,将列举6种常见的光电传感器应用,从现实生活出发,更好地理解光电传感器。
1、光电式烟雾报警器
没有烟雾时,发光二极管发出的光线直线传播,光电三极管没有接收信号。没有输出,有烟雾时,发光二极管发出的光线被烟雾颗粒折射,使三极管接受到光线,有信号输出,发出报警。
2、光电式转速表
在电动机的旋转轴上涂上黑白两种颜色,转动时,反射光与不反射光交替出现,光电传感器相应地间断接收光的反射信号,并输出间断的电信号,再经放大器及整形电路放大整形输出方波信号,最后由电子数字显示器输出电机的转速。
3、产品计数器
产品在传送带上运行时,不断地遮挡光源到光电传感器的光路,使光电脉冲电路产生一个个电脉冲信号。产品每遮光一次,光电传感器电路便产生一个脉冲信号,因此,输出的脉冲数即代表产品的数目,该脉冲经计数电路计数并由显示电路显示出来。
4、光电检测和自动控制
光电池作为光电探测使用时,其基本原理与光敏二极管相同,但它们的基本结构和制造工艺不完全相同。由于光电池工作时不需要外加电压;光电转换效率高,光谱范围宽,频率特性好,噪声低等,它已广泛地用于光电读出、光电耦合、光栅测距、激光准直、电影还音、紫外光监视器和燃气轮机的熄火保护装置等。
5、光电传感器在汽车上的应用
光电传感器还能为汽车提供更舒适的显示质量体验,让汽车显示设备在任何环境光下都能实现完全的背光效果。
包括车载娱乐/导航/DVD系统背光控制、后座娱乐用显示器背光控制、仪表组背光控制(速度计/转速计)、自动后视镜亮度控制等,都可以通过光传感器来完成。
除了以上几个应用,光电传感器在高压大电流测量、继电保护、烟尘浊度监测等方面也有着广泛应用。
4大市场趋势,透视光电传感器未来
激光传感器:超极版的光电传感器
激光传感器,有着无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等优点,被称为超级版光电传感器。近几年,自动驾驶非常火爆,而能精准远距测量及形成三维地图的激光雷达也因此而热得发紫,这是业内公认的自动驾驶最准的传感器。
据外媒报道,随着自动驾驶汽车技术的发展,汽车激光雷达传感器市场到2022年将达到8.18亿美元,复合年增长率达到47%。
未来,随着自动驾驶越来越多功能的改进与落地,人们对于自动驾驶不再只是幻想,汽车搭载辅助驾驶系统绝对是大趋势,而激光雷达的市场,也备受看好。
光纤传感器:搭乘5G快车开拓市场
光纤传感器相对普通的光电传感器来说,精度更高。普通的光电传感器由于光的扩散等原因,收光量的大小无法精确控制,即导致检测的精度无法提高精度,而光纤传感器通过光纤线传输光线,提高光束的聚拢程度,易判断收光量的大小,检测精度要高。
另外,光纤传感器还有体积极小、响应速度快、耐水、耐高温、耐腐蚀等优点,可测量磁、声、压力、温度、加速度、位移、液面、转矩、光声、电流等物理量,应用十分广泛。
再加上5G即将来临,作为5G基础的光纤传感,未来可搭乘5G快车,进一步打开市场。
CMOS传感器:智能时代的硬件标配
可见光传感器是目前产量最多、应用最广的传感器之一,其中,以CMOS线性可见光传感器为代表的高端可见光传感器,更是因暗电流小、灵敏度高、低照度响应等优点,受到背光调节及节能控制等市场的青睐,广泛应用于电视机、电脑显示器、LED背光、智能手机、数码相机等产品上。
据报道,2018年,全球CIS市场规模155亿美元,预计2019年同比增长10%,达到170亿美元。目前,CIS市场正处于稳定增长期,预计2024年市场逐渐饱和,市场规模达到240亿美元。
未来,随着智能时代的来临,日常生活中,我们智能硬件终端将日渐增多,而CMOS传感器的市场将随之扩张,所以,CMOS传感器是光电传感器未来重要的发展方向之一。
多功能MEMS光电传感器:发展的必然趋势
不仅是光电传感器,多功能、智能化、微型化可以说是所有传感器未来的趋势。
首先,随着终端用户体验的不断升级及消费习惯的逐渐改变,光电传感器要求具有保密性高、传输距离远、抗干扰性强、自适应性强、通信功能等特点,因此,在光电传感器中内置微处理器,实现智能化是光电传感器发展的必然趋势。
其次,传统的光电传感器往往体积较大,功能不完善,应用领域受限,难以满足便携设备、可穿戴设备等下游应用领域不断升级的消费需求。而随着精密加工、微电子、集成电路等技术的发展及新材料的应用,使得传感器中敏感元件、转换元件和调理电路的尺寸正在从毫米级走向微米级甚至纳米级,因此,微型化是未来光电传感器发展的必然趋势。
最后,随着光电传感器应用领城的不断扩大,为了能够全面而准确地反映客观事物和环境,往往需要同时测量多种被测变量,以满足终端应用的集成化要求,因此,多功能化是未来光电传感器发展的必然趋势。
编辑:hfy
打开APP阅读更多精彩内容
光电效应 传感器:3种光电效应,解读光电传感器核心工作原理  第1张

光电效应 传感器:光电传感器基本理论之光电效应详解

  光电式传感器是将光量的变化转变为电量变化的一种变换器。应用极为广泛,已经在航天、医学、科研,以及工业控制、家用电器、航海事业等各个领域得到应用。光电传感器的理论基础是光电效应,根据光电效应可以制作出各种光电传感器。今天,为大家具体介绍光电效应的基本理论知识。
  早期人们利用光电效应制成光电管。其外形和构造如下图所示。它是一个抽成真空的玻璃泡,在泡的内壁上有一部分涂有金属或金属氧化物,作为光电管的阴极。而光电管的阳极是一根环状的细金属丝或半圆的金属球。
光电管的结构
  光电效应的实验装置如下图所示。光电管的阳极A接高电位,阴极K接低电位,则阳极和阴极之间有一加速电场,电场方向由A指向K。AK之间的电压由电压表V读出,电压的大小由电位器R给定。图中,G是灵敏电流计。实验指出,当阴极没有受到光照射时,电路中几乎没有电流;当阴极受到光照射时,电路中就立即有电流出现。光照多久,电流就维持多久;光照停止,电流也就消失。这就说明当光照射时,有电子从光电阴极逸出。在加速电场作用下,电子飞向阳极,从而在回路中形成光电流。
光电效应的实验装置
  物质在光的作用下释放出电子,这种现象叫光电效应。光电效应通常又分为外光电效应和内光电效应两大类。
光电效应
  1.外光电效应
  在光线作用下,物体内的电子逸出物体表面,向外发射的现象称为外光电效应。基于外光电效应的光电器件有光电管、光电倍增管等。
  2.内光电效应
  受光照物体电导率发生变化,或产生光生电动势的效应叫内光电效应。内光电效应又可分为以下两大类。
  1)光电导效应
  在光线作用下,电子吸收光子能量从键合状态过渡到自由状态,而引起材料电阻率的变化,这种现象称为光电导效应。绝大多数的高电阻率半导体都具有光电导效应。基于这种效应的光电器件有光敏电阻(也称光电导管),其常用的材料有硫化镉(CdS)、硫化铅(PbS)、锑化铟(InSb)、非晶硅(a-Si:H)等。
  纯半导体在光线照射下,其禁带中的电子受到能量大于或等于禁带宽度Eg(eV)的光子的激发,由价带越过禁带跃迁到导带,成为自由电子。同时,价带也因此而形成自由空穴。致使纯半导体中导带的电子和价带的空穴浓度增大,半导体电阻率减小。如下图(a)所示。电子和空穴统称为载流子。它们在端电压作用下均可形成光电流。当光照停止后,自由电子被失去电子的原子俘获,电阻又恢复原值。能使价带电子跃迁到导带的光谱范围中,其最大的波长λ0(nm)称为截止波长,λ0≈1240/Eg。
  N型或P型掺杂半导体在光照射下,光子能量只要分别大于施主能级和导带底能级差或受主能级与满带顶能级差Ei(eV),如下图(b)或图(c)所示,光能即被吸收,激发出能参与导电的光生电子或空穴。掺杂半导体产生光生载流子的截止波长为λ0≈1240/Ei。
图 光电导效应机理图
  当光敏电阻接上直流电压Vb,并用一定强度、波长小于λ0的光线连续照射时,其输出直流电流i0为
  式中,η 内光量子效率(光生载流子数与人射光子数之比);μc——多数载流子的迁移率;τ——多数载流子寿命;d——光敏电阻两电极间距;p——入射光功率;e——普朗克常数,为6.6261×10-34J?s。
  随光能的增加,光生载流子浓度虽然也因之剧增,但同时电子与空穴间的复合速度也加快,因此低于截止波长的光能量与半导体所产生的光电流的特性曲线不是线性关系。
  2)光生伏特效应
  物体(如半导体)在光的照射下能产生一定方向的电动势的现象称为光生伏特效应。基.于该效应的光电器件有光电池、光敏二极管和光敏三极管。
  光生伏特效应根据其产生电势的机理可分为:
  ?侧向光生伏特效应
  侧向光生伏特效应又称殿巴(Dember)效应。
  当半导体光电器件的光灵敏面受光照不均匀时,由载流子浓度梯度而产生的光电效应称为侧向光生伏特效应。基于该效应工作的光电器件有半导体位置敏感器件(简称PSD),或称反转光敏二极管。
  侧向光生伏特效应的工作机理是,半导体光照部分吸收人射光子的能量产生电子空穴对,使该部分载流子浓度高于未被光照部分,因而出现了浓度梯度,形成载流子的扩散。由于电子迁移率比空穴的大,因此电子首先向未被光照部分扩散,致使被光照部分带正电,未被光照部分带负电,两部分之间产生光电动势。
  ?PN结光生伏特效应
  光照射到距表面很近的半导体PN结时,结及附近的半导体吸收光能。若光子能量大于禁带宽度,则价带电子跃迁到导带,成为自由电子,而价带则相应成为自由空穴。这些电子空穴对在PN结内部电场的作用下,电子移向N区外侧,空穴移向P区外侧,结果P区带正电,N区带负电,形成光电动势。
  PN结光生电流与人射光照度成正比,光生伏特与照度对数成正比。
  由于光生电子、空穴在扩散过程中会分别与半导体空穴、电子复合,因此载流子的寿命与扩散长度有关。只有使PN结距表面的厚度小于扩散长度,才能形成光电流产生光生伏特。在工程上,利用改变PN结距表面厚度的大小的方法,可以调整基于PN结光生伏特效应的光电器件的频率响应特性、光电流和光生电势大小。
  基于此效应的光电器件有光电池、太阳电池、光敏二极管和光敏三极管等。通过设计和制造工艺,使光电池工作在无外接电源下,则以光伏效应工作。光敏管工作在反向偏压下,则同时存在光导效应和光伏效应。它们输出的光电流与光照强度均具有线性关系。
  ?光电磁效应(简称PEM效应)
  半导体受强光照射,并在光照垂直方向外加磁场时,垂直于光和磁场的半导体两端面间产生电势的现象称为光电磁效应。它可以看成是光扩散电流的霍尔效应。
  ?贝克勒耳(Becquerel)效应
  贝克勒耳效应是液体中的光生伏特效应。当光照射浸在电解液中的两个同样电极中的任一个电极时,在两个电极间将产生电势的现象称为贝克勒耳效应。基于该效应的有感光电池。
 光电效应 传感器:3种光电效应,解读光电传感器核心工作原理  第2张

光电效应 传感器:光电式传感器光电效应

  基于光电效应的传感器。光电传感器在可见光照射后产生光电效应,光信号转化为电信号输出。它除了可以测量光强,而且还利用光的传播,阴影,反射,干扰,如测量多种物理量,如尺寸、位移、速度、温度等,所以它是一个非常广泛使用的重要敏感设备。光电测量不与被测物体直接接触,梁的质量和近似为零,不存在摩擦力测量压力和被测对象是很难的。所以在许多应用程序中,光电传感器比其他传感器具有明显的优越性。其缺点是在某些应用程序中,光学和电子产品价格更加昂贵,和环境条件对测量的要求也越来越高。
  光电效应
  是对某些物质材料的电特性变化的物理现象,可分为光电效应和光电效应两种。光电效应是指,在光的作用下在电子逃到物体的表面发射的物理现象。光子是量子化的“粒子”的形式描述在可见光波段的电磁波。光子能量高压,h是普朗克常数,v光学频率。
  分类
  基于光电传感器的光电效应与光电管和光电倍增管。基于光敏电阻的光电导效应。基于光电二极管和光电三极管的屏障效果(见半导体光敏元件)。基于横向光电效应有一个光电二极管的逆转。光电传感器也可以根据信号形式分为模拟光电传感器(见位移传感器)和数字光电传感器(见速度传感器、光栅传感器、数字传感器)。光电传感器和光纤传感器、固态图像传感器等。
光电效应 传感器:3种光电效应,解读光电传感器核心工作原理  第3张

光电效应 传感器:光电效应可分为哪三种类型,能否说明传感器的原理并分别列出以之为基础的光电传感器?

电效应可分为:
1、外光电效应:指在光的照射下,材料中的电子逸出表面的现象。光电管及光电倍增管均属这一类。它们的光电发射极,即光明极就是用具有这种特性的材料制造的。
2、内光电效应:指在光的照射下,材料的电阻率发生改变的现象。光敏电阻即属此类。
3、光生伏特效应:利用光势垒效应,光势垒效应指在光的照射下,物体内部产生一定方向的电动势。光电池是基于光生伏特效应制成的,是自发电式有源器件。
扩展资料
在光的照射下,某些物质内部的电子会被光子激发出来而形成电流,从能量转化的角度来看,这是个光生电, 光能转化为电能的过程。
光电效应最早由德国物理学家赫兹于1887年发现,但这一现象在当时很长一段时间内不能被解释清楚。光电效应正确的解释由爱因斯坦提出。科学家们对光电效应的深入研究对发展量子理论起了根本性的作用。
每一种金属在产生光电效应时都存在一极限频率(或称截止频率) ,即照射光的频率不能低于某一临界值。 相应的波长被称做极限波长(或称红限波长)。当射光的频率低于极限频率时,无论多强的光都无法使电子逸出。
参考资料来源:
百度百科——光电效应

光电效应可分为:
1、外光电效应:指在光的照射下,材料中的电子逸出表面的现象。光电管及光电倍增管均属这一类。它们的光电发射极,即光明极就是用具有这种特性的材料制造的。
2、 内光电效应:指在光的照射下,材料的电阻率发生改变的现象。光敏电阻即属此类。
3、光生伏特效应:利用光势垒效应,光势垒效应指在光的照射下,物体内部产生一定方向的电势。光电池是基于光生伏特效应制成的,是自发电式有源器件。

下一篇: PLC、DCS、FCS三大控

上一篇: 电气控制线路图控制原