发布日期:2022-10-09 点击率:459
温度控制器是最常见的控制器之一,在电子计算机,小车,厨房家电,中央空调和家庭装控温器等机器设备中,大家都能看到温度控制器的背影。现阶段,温度控制器的五种最普遍种类包含:热敏电阻热电偶RTD(电阻温度探测器)大数字温度计IC仿真模拟温度计IC
1、热敏电阻
热敏电阻(即,THERM人RESiStor的)是一种温度传感设备,其电阻是其温度的函数。热敏电阻有二种种类:PTC(正温度指数)和NTC(负温度指数)。PTC热敏电阻的电阻随温度上升而提升。反过来,NTC热敏电阻的电阻随温度上升而减少,这类种类的热敏电阻好像是最常见的热敏电阻。参照下边的图1。
图1.PTC和NTC热敏电阻的电气符号特别注意的是,热敏电阻的电阻两者之间温度中间的关联是十分离散系统的。请参照下边的图2。
图2.NTC热敏电阻的电阻与温度的关联NTC热敏电阻电阻随温度转变的规范通式为:
R25C是室内温度(25°C)下热敏电阻的允差电阻。该值一般在数据分析表中出示。β(β)是开尔文中热敏电阻的原材料常数。该值一般在数据分析表中出示。T是热敏电阻的具体温度,企业为摄氏。可是,有二种简易的技术性可用以线性化热敏电阻的个人行为,即电阻方式和电压方式。电阻方式线性化电阻方式线性化将一般电阻与热敏电阻串联。假如在室内温度下电阻的值与热敏电阻的值同样,则线性化地区将在室内温度上下对称性。请参照下边的图3。
图3.电阻方式线性化电压方式线性化电压方式线性化使热敏电阻与产生分压器电源电路的一般电阻器串联,该分压器电源电路务必联接到己知的,固定不动且平稳的电压标准VREF。这类配备的功效是造成在全部温度范畴内呈线形的輸出电压。而且,类似电阻方式线性化,假如电阻器的值相当于室内温度下热敏电阻的电阻,则线性化地区将在室内温度周边对称性。请参照下边的图4。
图4.电压方式线性化
2、热电偶
热电偶一般用以精确测量较高的温度和很大的温度范畴。热电偶的原理是一切遇热梯度方向功效的电导体都是造成一个小的电压,这类状况被称作Seebeck效用。造成的电压的尺寸在于金属材料的种类。Seebeck效用的具体运用涉及到二种不一样的金属材料,他们在一端相接,在另一端分离。能够根据非结端输电线中间的电压来明确节点的温度。因应用的金属复合材料不一样,热电偶有各种类型。在其中,铝合金组成已越来越时兴,而且需要的组成受包含成本费,易用性,物理性质和可靠性等要素的驱动器。不一样的种类的金属材料组成,适用不一样的运用,客户一般依据需要的温度范畴和敏感度来挑选他们。相关热电偶特点的数据图表,请参照图5。
图5.热电偶特点
3、电阻温度探测器(RTD)
电阻温度探测器,也称之为电阻温度计。RTD与热敏电阻相近,由于他们的电阻会随温度转变。可是,RTD不用像热敏电阻那般应用对温度转变比较敏感的材料,只是应用线圈电感由瓷器或夹层玻璃做成的铜芯电缆的电磁线圈。RTD输电线为纯原材料,一般为铂,镍或铜,而且该原材料具备精准的电阻-温度关联,用以明确测出的温度。
4、仿真模拟温度计IC
取代在分压器电源电路中应用热敏电阻和固定值电阻器的取代计划方案是仿真模拟底压温度控制器,比如AnalogDevices的TMP36。与热敏电阻反过来,该仿真模拟IC出示的輸出电压基本上是线性的。在-40至+125°C的温度范畴内,斜率为1b250V/°C,精准至±2°C。参照下边的图6。
图6虽然这种机器设备十分便于应用,但他们比热敏电阻加电阻的组成要贵得多。
5、大数字温度计IC
大数字温度机器设备更为繁杂,但他们将会十分精确。一样,他们能够简单化您的详细设计,由于模数转换产生在温度计IC內部,而不是例如微处理器这类的单独机器设备。比如,MaximIntegrated的DS18B20的精密度为±0.5°C,温度范畴为-55°C至+125°C。并且,一些大数字IC能够配备为从其手机充电线中搜集动能,进而容许仅应用两道(即数据信息/开关电源和接地线)开展连接。
图7.DS18B20框架图,节选自DS18B20数据分析表小结:下列是各种温度控制器的简略较为。
举报/反馈
收藏
查看我的收藏
0
有用+1
已投票
0
温度传感器
语音
编辑
锁定
讨论
上传视频
上传视频
本词条由“科普中国”科学百科词条编写与应用工作项目
审核
。
温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
中文名
温度传感器
外文名
temperature transducer
开始时间
17世纪初
主要类型
热电偶、热敏电阻等
目录
1
主要分类
?
接触式
?
非接触式
2
工作原理
?
电阻传感
?
热电偶传感
3
挑选方法
4
选用注意
5
检定装置
6
安装使用
7
发展状况
8
主要用途
9
应用领域
温度传感器主要分类
编辑
语音
温度传感器接触式
接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。
温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。
温度传感器非接触式
它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。
最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。
非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温 逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。
温度传感器工作原理
编辑
语音
金属膨胀原理设计的传感器金属在环境温度变化后会产生一个相应的延伸,因此传感器可以以不同方式对这种反应进行信号转换。双金属片式传感器
温度传感器
双金属片由两片不同膨胀系数的金属贴在一起而组成,随着温度变化,材料A比另外一种金属膨胀程度要高,引起金属片弯曲。弯曲的曲率可以转换成一个输出信号。双金属杆和金属管传感器随着温度升高,金属管(材料A)长度增加,而不膨胀钢杆(金属B)的长度并不增加,这样由于位置的改变,金属管的线性膨胀就可以进行传递。反过来,这种线性膨胀可以转换成一个输出信号。液体和气体的变形曲线设计的传感器在温度变化时,液体和气体同样会相应产生体积的变化。多种类型的结构可以把这种膨胀的变化转换成位置的变化,这样产生位置的变化输出(电位计、感应偏差、挡流板等等)。
温度传感器电阻传感
金属随着温度变化,其电阻值也发生变化。对于不同金属来说,温度每变化一度,电阻值变化是不同的,而电阻值又可以直接作为输出信号。电阻共有两种变化类型正温度系数温度升高=阻值增加温度降低=阻值减少负温度系数温度升高=阻值减少
热电阻
温度降低=阻值增加
温度传感器热电偶传感
热电偶由两个不同材料的金属线组成,在末端焊接在一起。再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为热电偶。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。
[1]
热电偶
由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。
温度传感器挑选方法
编辑
语音
如果要进行可靠的温度测量,首先就需要选择正确的温度仪表,也就是温度传感器。其中热电偶、热敏电阻、铂电阻(RTD)和温度IC都是测试中最常用的温度传感器。以下是对热电偶和热敏电阻两种温度仪表的特点介绍。1、热电偶
热电偶是温度测量中最常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是最便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。可用测量的电势差来计算温度。不过,电压和温度间是非线性关系,温度由于电压和温度是非线性关系,因此需要为参考温度(Tref)作第二次测量,并利用测试设备软件或硬件在仪器内部处理电压-温度变换,以最终获得热偶温度(Tx)。AgilentA和A数据采集器均有内置的测量了运算能力。简而言之,热电偶是最简单和最通用的温度传感器,但热电偶并不适合高精度的的测量和应用。2、热敏电阻
温度传感器(图6)
热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。热敏电阻在两条线上测量的是绝对温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。热敏电阻还有其自身的测量技巧。热敏电阻体积小是优点,它能很快稳定,不会造成热负载。不过也因此很不结实,大电流会造成自热。由于热敏电阻是一种电阻性器件,任何电流源都会在其上因功率而造成发热。功率等于电流平方与电阻的积。因此要使用小的电流源。如果热敏电阻暴露在高热中,将导致永久性的损坏。通过对两种温度仪表的介绍,希望对大家工作学习有所帮助。
温度传感器选用注意
编辑
语音
温度传感器(图7)
1、被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送;2、测温范围的大小和精度要求;3、测温元件大小是否适当;4、在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求;5、被测对象的环境条件对测温元件是否有损害;6、价格如保,使用是否方便。
温度传感器检定装置
编辑
语音
温度传感器检定规程:
温度传感器(图8)
1、《JJG229-2010工业铂、铜热电阻检定规程》2、《JJG833-2007标准组铂铑10-铂热电偶检定规程》3、《JJG141-2000工作用贵金属热电偶检定规程》4、《JJG351-1996工作用廉金属热电偶检定规程》5、《JJG368-2000工作用铜-铜镍热电偶检定规程》温度传感器检定标准技术及指标:1、测量准确度:0.01级;分辨率0.1uV和0.1mΩ;2、扫描开关寄生电势:≤0.4μV;
温度传感器(图9)
3、温度范围: 水槽:(室温+5~95)℃ 油槽:(95 ~ 300)℃ 低温恒温槽:(-80 ~ 100)℃ 高温炉:(300~1200)℃;4、控温稳定度:优于0.01℃/10min(油槽、水槽、低温恒温槽);0.2℃/min(管式检定炉);5、总不确定度:热电偶检定,测量不确定度优于0.7℃,重复性误差<0.25℃;热电阻检定测量不确定度优于50mk,重复性误差<10mk;6、检定数量:一次可同时检热电偶(1-8)支,一次可同时检同线制热电阻(1-7)支;7、工作电源:AC220V±10%,50Hz,并有良好保护接地;8、高温炉功率:约2KW;9、恒温槽功率:约2KW;10、微机测控系统功率:<500。温度传感器检定装置功能和特点:1、检定K、E、J、N、B、S、R、T等多种型号的工作用热电偶;
温度传感器(图10)
2、检定Pt100、Pt10、Cu50、Cu100等各种工作用热电阻,玻璃液体温度计、压力式温度计、双金属温度计;3、多路低电势自动转换开关,寄生电势≤0.4μV;4、控制1-4台高温炉;5、温场测试:可进行检定炉、油槽、水槽、低温恒温槽的温场测试;6、线制转换:可进行二线制、三线制、四线制电阻检定;7、软件具有比对实验、重复性实验、温场实验等相关实验功能;8、在Windows2000/XP以上平台,全中文界面,标准Windows操作系统,方便快捷。可实现:1)设备自检、查线;2)屏幕显示并保存控温曲线≤0.4μV;3)检测数据自动采集;4)自动生成符合要求的检定记录;5)自动保存检定结果,且不可人工更改;6)查询各种热电偶、热电阻分度表及其它帮助;7)热电偶、热电阻所有历史检定数据、控温曲线查询 统计及计量的智能化管理功能。
温度传感器安装使用
编辑
语音
温度传感器在安装和使用时,应当注意以下事项方可保证最佳测量效果:1、安装不当引入的误差
温度传感器(图11)
如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。2、绝缘变差而引入的误差如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。3、热惰性引入的误差
温度传感器(图12)
由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。4、热阻误差高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。
温度传感器发展状况
编辑
语音
温度传感器(图13)
近年来,我国工业现代化的进程和电子信息产业连续的高速增长,带动了传感器市场的快速上升。温度传感器作为传感器中的重要一类,占整个传感器总需求量的40%以上。温度传感器是利用NTC的阻值随温度变化的特性,将非电学的物理量转换为电学量,从而可以进行温度精确测量与自动控制的半导体器件。温度传感器用途十分广阔,可用作温度测量与控制、温度补偿、流速、流量和风速测定、液位指示、温度测量、紫外光和红外光测量、微波功率测量等而被广泛的应用于彩电、电脑彩色显示器、切换式电源、热水器、电冰箱、厨房设备、空调、汽车等领域。近年来汽车电子、消费电子行业的快速增长带动了我国温度传感器需求的快速增长。
温度传感器主要用途
编辑
语音
温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的测量参数。温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用。由于温度测量的普遍性,温度传感器的数量在各种传感器中居首位,约占50%。温度传感器是通过物体随温度变化而改变某种特性来间接测量的。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。温度传感器与被测介质的接触方式分为两大类:接触式和非接触式。接触式温度传感器需要与被测介质保持热接触,使两者进行充分的热交换而达到同一温度。这一类传感器主要有电阻式、热电偶、PN结温度传感器等。非接触式温度传感器无需与被测介质接触,而是通过被测介质的热辐射或对流传到温度传感器,以达到测温的目的。这一类传感器主要有红外测温传感器。这种测温方法的主要特点是可以测量运动状态物质的温度(如慢速行使的火车的轴承温度,旋转着的水泥窑的温度)及热容量小的物体(如集成电路中的温度分布)。
温度传感器应用领域
编辑
语音
温度传感器
[2]
是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继 开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不 加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为“热电偶”。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度 也各不相同。热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶 温度传感器的灵敏度与材料的粗细无关
词条图册
更多图册
解读词条背后的知识
查看全部
押镖人
真诚对人,诚信做事。让养车更简单。
冷却液温度传感器的作用及故障现象 ONE
作为汽车发动机电控系统的重要组成部分,传感器是为发动机模块ECM提供各种重要信息的信号输入端,如果传感器出现异常或失效等故障,ECM将无法接收或接收到错误的信息而对发动机的控制造成严重后果。因此,对电控发动机的传感器进行正确的故障诊断意义重大。下面我们会重点介绍电控汽油发动...
2020-06-131
麦科信Micsig
深圳麦科信仪器官方帐号
汽车冷却液温度传感器信号汽修示波器测量
发动机冷却液温度传感器又称为水温传感器,其传感器器件一般是安装在发动机缸体、缸盖的水套或者节温器内并伸入水套中。冷却液温度传感器其作用是用于检测发动机冷却液的温度,发动机电子控制元件ECU根据该信号对喷射时间、点火时刻、怠速转速等进行相应的调节,同时也会作为其他控制系统如控...
2021-01-111
创作者3957
深圳唯修汇科技有限公司
空调温度传感器可以随便替换?听听专家怎么说
无论是家用空调还是中央空调,空调温度传感器都是非常关键的部件,空调机组的很多软性故障,都是由温度传感器导致。了解空调温度传感器对空调维修非常重要,空调温度传感器的关键问题解释如下:空调温度传感器实际是负温度系数热敏电阻,温度高阻值小,温度低阻值高。不同品牌的空调采用的温度传...
2018-08-220
科技知讯汇
记录互联网的点点滴滴
关于温度传感器,你知道哪些属于温度传感器吗?
温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等场所。对于温度传感器的种类非常多,不同的感温元件不同的型号,可以从厂家产品手册中获知,下面将温度传感器的类型简介如下:通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感...
2020-03-130
电子设计圈
专注高科技领域传统PR、Social Media十余年
艾迈斯半导体创新推出全球最高精度的数字温度传感器
· AS6221是一套完整的温度传感器系统,测量精度可达±0.09°C,性能优于市场上同类的数字温度传感器芯片· 借助该传感器,健康状态监测产品能够实现更精准的人体/皮肤温度测量性能· 采用微型封装,尺寸仅为1.5mm x 1mm·...
2020-12-030
参考资料
1.
传感器设计原理
.西伯尔[引用日期2013-10-24]
2.
温度传感器在传感器中的应用
.温度传感器[引用日期2013-06-07]
描述
温度传感器是最常用的传感器之一,在计算机,汽车,厨房电器,空调和家用恒温器等设备中,我们都能看见温度传感器的身影。
1、热敏电阻
热敏电阻(即,THERM人RES iStor的)是一种温度感测装置,其电阻是其温度的函数。
热敏电阻有两种类型:PTC(正温度系数)和NTC(负温度系数)。PTC热敏电阻的电阻随温度升高而增加。相反,NTC热敏电阻的电阻随温度升高而减小,这种类型的热敏电阻似乎是最常用的热敏电阻。
值得注意的是,热敏电阻的电阻与其温度之间的关系是非常非线性的。
R 25C是室温(25°C)下热敏电阻的标称电阻。该值通常在数据表中提供。
β(β)是开尔文中热敏电阻的材料常数。该值通常在数据表中提供。
T是热敏电阻的实际温度,单位为摄氏度。
但是,有两种简单的技术可用于线性化热敏电阻的行为,即电阻模式和电压模式。
电阻模式线性化
电阻模式线性化将普通电阻与热敏电阻并联。如果在室温下电阻的值与热敏电阻的值相同,则线性化区域将在室温左右对称。
电压模式线性化
电压模式线性化使热敏电阻与形成分压器电路的普通电阻器串联,该分压器电路必须连接到已知的,固定且稳定的电压基准V REF。
这种配置的作用是产生在整个温度范围内呈线性的输出电压。并且,类似于电阻模式线性化,如果电阻器的值等于室温下热敏电阻的电阻,则线性化区域将在室温附近对称。
2、热电偶
热电偶通常用于测量较高的温度和较大的温度范围。
热电偶的工作原理是任何受热梯度作用的导体都会产生一个小的电压,这种现象被称为Seebeck效应。产生的电压的大小取决于金属的类型。Seebeck效应的实际应用涉及两种异种金属,它们在一端相连,在另一端分开。可以通过非结端导线之间的电压来确定结点的温度。
因使用的金属材料不同,热电偶有多种类型。其中,合金组合已变得流行,并且所需的组合受包括成本,可用性,化学性质和稳定性等因素的驱动。不同的类型的金属组合,适用于不同的应用,用户通常根据所需的温度范围和灵敏度来选择它们。
3、电阻温度检测器(RTD)
电阻温度检测器,也称为电阻温度计。RTD与热敏电阻类似,因为它们的电阻会随温度变化。但是,RTD不需要像热敏电阻那样使用对温度变化敏感的特殊材料,而是使用绕制由陶瓷或玻璃制成的芯线的线圈。
RTD导线为纯材料,通常为铂,镍或铜,并且该材料具有精确的电阻-温度关系,用于确定测得的温度。
4、模拟温度计IC
替代在分压器电路中使用热敏电阻和固定值电阻器的替代方案是模拟低压温度传感器,例如Analog Devices的TMP36。与热敏电阻相反,该模拟IC提供的输出电压几乎是线性的。在-40至+125°C的温度范围内,斜率为10mV/°C,精确至±2°C。
5、数字温度计IC
数字温度设备更加复杂,但它们可能非常准确。同样,它们可以简化您的总体设计,因为模数转换发生在温度计IC内部,而不是诸如微控制器之类的独立设备。例如,Maxim Integrated的DS18B20的精度为±0.5°C,温度范围为-55°C至+125°C。
而且,某些数字IC可以配置为从其数据线中收集能量,从而允许仅使用两条线(即数据/电源和地线)进行连接。
责任编辑人:CC
打开APP阅读更多精彩内容
根据测量方法,温度传感器可分为两大类:接触式和非接触式,根据传感器的材料和电子元件的特性,可分为耐热性和热电偶。温度传感器是一种能够感知温度并将其转换为可用输出信号的传感器。温度传感器是温度测量装置的中心部件。
接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。
非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。
下一篇: PLC、DCS、FCS三大控
上一篇: 电气控制线路图控制原