发布日期:2022-10-09 点击率:2880
光栅传感器缺点:光纤光栅优缺点 第1张" title="光纤光栅传感器缺点:光纤光栅优缺点 第1张-传感器知识网"/>
深圳万希源光电科技有限公司
光纤光栅优缺点
与普通机械、电子类传感器,光纤传感器具有以下优点:
1. 抗电磁干扰:一般电磁辐射的频率比光波低很多,所以在光纤中传输的光信号不受电磁干扰的影响。
2. 电绝缘性能好,安全可靠:光纤本身是由电介质构成的,而且无需电源驱动,因此适宜于在易燃易爆的油、气、化工生产中使用。
3. 难腐蚀,化学性能稳定:由于制作光纤的材料-石英具有极高的化学稳定性,因此光纤传感器适宜于在较恶劣环境中使用。
4. 体积小、重量轻,几何形状可塑。
5. 传输损耗小:可实现远距离遥控监测。
6. 传输容量大:可实现多点分布式测量。
7. 测量范围广:可测量温度、压强、应变、应力、流量、流速、电流、电压、液位、液体浓度、成分等。
8. 光栅的长度小,只有毫米级,测量值空间分辨率高。
9. 输出线性范围宽,在微应变范围内波长移动与应变有良好的线性关系,频带宽,信噪比高。
基于土木工程智能监测的实际需要,对不同传感材料进行定性比较,如表1所示:
综合比较这些智能传感元件的各项指标,可以看出光纤传感器是土木工程健康监测的最佳选择。
与传统的光纤传感器相比,波长调制型的光纤光栅传感器具有许多光纤传感器所不具有的独特优点:
1. 抗干扰能力强:这一方面是因为普通传输光纤不会影响光波的频率特性(忽略光纤的非线性效应);另一方面光纤光栅传感系统从本质上排除了各种光强起伏引起的干扰,例
上一页下一页
展开全文
基本原理
光纤光栅是利用光纤材料的光敏性:即外界入射光子和纤芯相互作用而引起后者折射率的永久性变化,用紫外激光直接写入法在单模光纤的纤芯内形成的空间相位光栅,其实质是在纤芯内形成一个窄带的滤光器或反射镜。
常用的Bragg光纤光栅属于反射型工作器件,当光源发出的连续宽带光(下图中Ιi)通过传输光纤射入时,它与光场发生耦合作用,对该宽带光有选择地反射回相应的一个窄带光(下图中Ιr),并沿原传输光纤返回;其余宽带光(下图中Ιt)则直接透射过去,在下一个具有不同中心波长的光纤光栅处进行反射,多个光纤光栅阵列形成光纤光栅传感网络。
各光纤光栅反射光的中心波长λ为:
(1)
式中n为纤芯的有效折射率;Λ为纤芯折射率的调制周期。目前,在结构变形和温度监测中,普遍采用周期Λ<1 μm的短周期光纤光栅传感器,其反射波长人称为Bragg波长。根据式(1),解调出反射光波长即可以寻址到光纤光栅传感网络中每个传感器。
反射回来的窄带光的中心波长随着作用于光纤光栅的温度和应变成线性变化,中心波长的变化量为:
(2)
式中ε为应变量;Δt为温度变化量。由式(2)可知,光纤光栅反射光中心波长同时受温度和应变的影响,比较成熟的方法是采用同种温度环境下的光纤光栅温度补偿传感器进行克服。
光纤光栅传感器可以用于应力、应变或温度等物理量的传感测量,具有较高的灵敏度和测量范围。在光纤若干个部位写入不同栅距的光纤光栅,就可以同时测定若干部位相应物理量及其变化,实现准分布式光纤传感。
光纤光栅传感技术的优点在于:
1)抗电磁干扰,传输距离远。
2)多个不同类型的传感器可以在一条光纤上串接复用,增加了系统容量。
3)以反射光的中心波长表征被测量,系统安装及长期使用过程中无需定标。
4)适合结构健康监测(SHM)系统中长距离动静态应变信号(电压信号微弱,易受干扰)的采集。
光纤光栅传感技术的缺点在于:
1)光纤光栅直接反映应变和温度耦合的变化,在测量应变时,必须进行温度补偿。
2)光纤光栅较适用于测量基于应变和温度变化的静态或准静态物理量(如应变、应力、温度、位移、索力、压力等),不适用于测量动态信号(如振动信号)和 湿度、风速等信号。
3)光纤光栅传感器和解调设备不便于现场调试。为减少光纤信号损耗并避免空气或灰尘进入法兰盘导致激光无法传输,一般使用光纤熔接的方式接联传感器,这样不能满足在现场调试阶段经常拆换传感器的需要。
4)现有的解调设备往往由工控机构成,工作温湿度范围、抗震及耐腐蚀性能受限,不耐恶劣环境。
-------------------------------------------
关于VISN-iFBG-S15光纤光栅解调仪
VISN-iFBG-S15是适合光纤布拉格光栅(FBG)光学传感器的15通道光纤光栅解调仪。2Hz采样频率可以测量低速变化的温度、应变和压力等物理参数。内置大功率波长扫描型激光器,每个光学通道具有80nm波长范围(1510nm~1590nm),波长解调精度达1pm,可同时连接16个FBG传感器(取决于传感器波长范围)。解调仪支持GPS同步,便于采集站间同步,适用于桥梁、大坝、建筑物等长期状态监测。
点击左下“阅读原文”了解更多详情。
光纤光栅传感方式的特征及优点论文
1.引言
在对港口机械设备结构应力状态的监测中,主要有基于电阻应变电测技术的监测方法和基于光纤光栅传感技术的监测方法,其配套设备、数据采集原理、系统框架都存在巨大的差异。
2.电测式监测系统基本构成
应变电测法的测量系统通常由应变片、应变仪、记录仪及计算分析设备等部分组成。它的基本原理是:将应变片按构件的受力状况,合理的固定在被测构件表面,当构件受力变形时,应变片的电阻值就发生相应的变化。通过电阻应变仪将这种电阻值的变化测量出来,并换算成应变值或输出与应变成正比的模拟电信号(电流或电压),用记录仪器记录此电信号,再作分析与处理。也可用分析设备或计算机按预定的要求直接接受模拟电信号并进行数据处理,从而得到应力、应变值或其他物理量。基于电阻应变电测技术的港机金属结构远程在线监测系统基本框架图描述如下:
3.光纤光栅式监测系统的基本构成
光纤光栅式结构监测系统的设备通常包括以下几类:①光纤光栅应变传感器;②数据接收器;③光纤光栅解调器;④工控机(数据分析系统);⑤无线局域网+远程主机等(如果需要实现远程监测,则还需要在采集器中集成数据远程传输模块)。综合看来,基于光纤光栅传感技术的港机金属监测方法系统一般框架图可以描述如下:此系统中,光纤光栅传感器直接埋入或粘贴在结构的表面,以进行结构状态的在线全程信号采集(其中包括用于结构关键部位健康状传感器和用于结构损伤诊断的传感器),在结构上合理布置的。再用多种复杂技术(时分,频分和波分)对光信号进行直接传输。从重大工程结构上采集后的光信号,通过远程传输光纤网络,传输到健康监测和损伤诊断中心。同时,可以在中心对数据采集方式进行远程调控。
4.两种方式的比较
4.1传感原理比较
①电阻应变测试技术。电阻应变测试技术,它是采用电阻应变计(又称电阻应变片)作为传感元件将构件表面应变转化为电阻变化,然后用电阻应变仪把电阻变化转换成电压或电流变化,经放大并测量这种变化再用其他仪器记录,由所测应变换算出应力。应变片测量应变的工作原理是基于金属丝的电阻随其机械形变而变化的一种特性。令金属丝的长度为L,直径为D,截面积为A,电阻率为,则金属丝的电阻为:K与两个因数有关,一个是电阻丝材料的泊松比,由电阻丝几何尺寸改变引起,当选定材料后,泊松比为常数;另一个是电阻丝发生单位应变引起的电阻率的改变,对大多数电阻丝而言也是一个常量。因此可以认为是一个常数。由此可见,应变片的电阻变化率与应变值呈线性关系。②光纤光栅传感技术。如图3所示,当一束宽光谱光λ,经过光纤Bragg光栅时,被光栅反射回一单色光λB,相当于一个窄带的反射镜。反射光的中心波长λB与光栅的折射率变化周期Λ和纤芯有效折射率neff有关。光纤光栅的传感与原理如图4所示。光纤光栅的反射或透射波长主要取决于光栅周期改变量ΔΛ和反向耦合模的有效折射率neff,任何使这两个参数发生改变的物理过程都将引起光栅波长的漂移,具体的关系式如下:由于光栅无论是拉伸还是压缩,均会导致光栅周期发生变化。此外,光纤本身具有的弹光效应决定了它的有效折射率neff必定随外界应力状态的变化而变化,因此应力应变是所有反映光栅波长漂移的最直接外界因素,这就是光纤光栅材料可以制作成光纤应变传感器并检测应力应变特性等基本物理参量的重要原因。试验证明,采用光纤光栅温度补偿传感器可以克服温度对应变测量的影响。
4.2传感器的性能比较
①干扰问题。电阻式传感器响应输出的电信号易受环境因素(如温度、湿度、电磁干扰等)的影响,进而导致传感的准确度、灵敏度、持久性的降低。光纤光栅传感器的测量信息是波长编码的,所以,光纤光栅传感器不受光源的光强波动、光纤连接及耦合损耗、以及光波偏振态的变化等因素的影响,有较强的抗干扰能力;同时光纤光栅具有非传导性,对被测介质影响小,又具有抗腐蚀、抗电磁干扰的特点。
②分布性能及布线问题。电类传感器大多为分离型器件,不易与复合物集成,没有分布测量的能力,并且需要另外的信号传输载体,导致传感器及引线的巨大增加,现场实施困难。光纤光栅传感器在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,可实现分布式传感。
③寿命问题。受光纤材料的影响,光纤传感器存在抗外力能力弱的缺点,使用时需做好保护工作。由于光纤光栅比较脆弱,在恶劣工作环境中非常容易破坏,因而需要对其进行封装后才能使用。较为传统的.传感组元和传感技术如应变片、加速度计、超声设备等并不具备上述能力,但是随着传感器制作工艺的不断精细化及其使用市场的扩大化,此类传感器的使用寿命正逐渐得到改善和加强。
④被测参量的多样、多维性。基于波长调制的光纤光栅式传感器,可以在统一的光纤介质下,依据不同原理制作生产出光纤光栅应变传感器、温度传感器、加速度传感器、位移传感器、压力传感器等。在此基础下,信号的转换处理程序较为便利。⑤配套设备设施。由图1、2可知,电测式监测系统除电阻式传感器外,所需的设备有动态应变解调仪、屏蔽电缆、若干条并接应变片的电缆(有线情况下)等,而光纤光栅式监测系统除光纤光栅式应变传感器外,还需要一条串接传感器的光纤线及光纤光栅解调仪等基本设备。
5.结束语
结合上面的分析及描述,从传感原理、传感器性能以及监测系统实用性和经济性等多方面综合比较,可以得出下表1的结论。从上面的分析看来,光纤光栅式传感器在技术上整体优于应变电测式传感器。逐渐成熟并发展的基于光纤光栅传感技术的监测方法克服了电类传感器在检测中出现的相关问题,可实现远距离传感监测,且灵敏度也大大的提高,提升了整个监测系统的工作品质。光纤传感技术特别是光纤光栅传感技术应用于大型港口起重机械领域,将为大型港口起重机械健康监测和安全状况评估注入新的活力,为起重机械长期在线健康监测学科的发展带来了契机。
【光纤光栅传感方式的特征及优点论文】相关文章:
1.关于光纤光栅测温系统的论文
2.传感器技术教学方式革新的论文
3.有线电视光纤特征与日常维护研究论文
4.塑料光纤的研究论文
5.无线传感器网络节点节能管理方式的研究论文
6.网络市场及特征研究的相关论文
7.有关光纤的使用研究论文
8.光纤通信的应用论文
光纤温度传感器的优点很多,缺点可以说是几乎没有,可能价格方面会比传统的pt100温度传感器来说会贵一点,对于传统的传感器来说,比如pt100温度传感器等有着明显的优势。
光纤温度传感器按工作原理可分为功能型光纤温度传感器和传输型光纤温度传感器
功能型光纤温度传感器是利用光纤的各种特性f相位、偏振、强度等)随温度变换的特点,进行温度测定。这类传感器尽管具有传、感合一的特点,但也增加了增敏和去敏的困难。
传输型光纤温度传感器的光纤只是起到光信号传输的作用,以避开测温区域复杂的环境,对待测对象的调制功能是靠其他物理性质的敏感元件来实现的。这类传感器由于存在光纤与传感头的光耦合问题,增加了系统的复杂性,且对机械振动之类的干扰较敏感。
光纤荧光温度传感器
光纤荧光温度传感器是目前研究比较活跃的新型温度传感器。荧光测温的工作机理是建立在光致发光这一基本物理现象上。
所谓光致发光是一种光发射现象,就是当材料由于受紫外、可见光或红外区的光激发,所产生的发光现象。出射的荧光参数与温度有一一对应关系,通过检测其荧光强度或荧光寿命来得到所需的温度的。
1、电磁/射频环境,传统的测温方法受到严重干扰无法正常工作;
2、对精度、灵敏度,或者寿命、稳定/可靠性等有特别高的要求;
3、安装环境狭小,对传感器尺寸有特殊要求;
4、易燃易爆、腐蚀环境,对安全性/耐腐蚀性有特殊要求。
5、雷击,野外等恶劣环境中。
6、测试现场能源供应不方便的地方。
光纤荧光温度传感器于其它光纤温度传感器相比有自己独特的优点:由于荧光寿命与温度的关系从本质上讲是内在的,与光的强度无关,这样就可以制成自较准的光纤温度传感器。而一般的基于光强度检测的光纤温度传感器则因为系统的光传输特性往往与传输光纤和光纤耦合器等相关而需经常校准。
福州华光天锐提供荧光光纤测温系统,分布式光纤测温系统,光纤光栅传感器,自主研发生产,价格合理,欢迎代理合作联系!
下一篇: PLC、DCS、FCS三大控
上一篇: 电气控制线路图控制原