发布日期:2022-10-09 点击率:38
l 薄膜铂电阻系列
型号
外形尺寸
W×L×Hmm
标称阻值
R0
工作电流
mA
引线尺寸
W×H×Lmm
工作温度
℃
误 差
外形图
mm
CRZ-1632-100-Ni
1.6×3.2×1.0
100Ω
1
0.25×0.15×12
-40~450
1/3DIN
A
B
2B
CRZ-2005-100-Ni
2.0×5.0×1.0
0.25×0.15×12
-40~450
CRZ-2005-100-Pd
0.3×0.2×10
-50~500
CRZ-2005-1000-Ni
CRZ-2005-500-Ni
500Ω
1000Ω
0.5
0.25×0.15×12
-40~450
ST-1003-Pt
1.0×3.0×1.3
20Ω
1
0.25×0.15×12
-50~500
l 线绕陶瓷PC(玻璃PG)铂电阻
型号
外形尺寸
D×Lmm
标称阻值R0
工作电流mA
引线尺寸
D×Lmm
误差
工作温度
℃
外形图
mm
PC1612
1.6×12
100Ω
5
0.20×10
A
B
-200~600
-200~850
PC1615
1.6×15
0.20×10
PC1625
1.6×25
0.20×10
PC2213
2.2×13
0.35×10
PC2215
2.2×15
PC2515
2.5×15
PC3015
3.0×15
PC3025
3.0×25
备注:承接各种非标阻值(如PT45、BA1、BA2等)和非标尺寸测温元件的定做。
选型资料下载
pt100温度传感器的应用
石油倾点温度测试PT100温度传感器的标定
摘要:作者设计了直径为3mm、长为27cm 的Pt100型传感器,根据0.10℃刻度的温度测试仪作为标定标准,利用软件来矫正其非线形失真,该产品实现对石油倾点温度信号的采集和标定。
关键词: Pt100传感器;电桥测温;石油倾点
一、引言
石油倾点温度是指管道内凝固态的原油开始融解流动的*低温度。国际上测试规程要求每隔2℃就要对其流动情况进行判断并测温,但由于石油运输管线很长,原油每升温1℃需要大量能源,因此对倾点温度测量的精度对油田节能有重大意义。我们选用Pt100温度传感器来完成对石油倾点温度的测量。
二、PT100温度传感器工作原理及其主要技术参数
Pt100传感器是利用铂电阻的阻值随温度变化而变化、并呈一定函数关系的特性来进行测温,其温度/阻值对应关系为[1]:
(1)-200℃<t<0℃时,rpt100=100[1+at+bt2+ct3(t-100)] (1)="" (2)0℃≤t≤850℃时,rpt100="100(1+At+Bt2)" (2)="" 式中,a="3.×10-3;B=-5.80×10-7;C=4.2735×10-12。" pt100温度传感器的主要技术参数如下:测量范围:-200℃~+850℃;允许偏差值△℃:A级±(0.15+0.002│t│), B级±(0.30+0.005│t│);热响应时间<30s;*小置入深度:热电阻的*小置入深度≥200mm;允通电流≤5mA。另外,Pt100温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。
三、PT100温度传感器倾点温度测量原理:
1、原理方框图
根据倾点温度测试的国内外要求—温度每降2℃就要对油样的凝结情况进行检测,我们设计了测量过程(如图1)。
2、电桥采集数据的电路图及原理
Pt100电桥电路如图2所示。其中,R1﹑R2﹑R3﹑RPt100组成电桥,R1=R2=R3=R0。为了避免流过Pt100传感器的电流过大使其发热进而导致非线性失真增大,电桥电压不宜太高,一般要求Im<5mA,电桥电压Vbrg=1V。电桥输出压差为:
VD=(3)
令RPt100-R0=ΔR,则有:
VD=(4)
由Pt100温度/阻值对应关系式可知,当温度较低时,Pt100的阻值变化量ΔR相对于R0较小,则电桥输出压差为: VD=,即VD正比于Pt100传感器的阻值变化量ΔR,也说明温度较低时,Pt100传感器的线性度良好;当温度较高时,ΔR/R0的值较大,Pt100传感器的线性度变差,此时要用软件来较正。
四、PT100温度传感器测量中的定量计算及误差分析
1、运算放大器放大倍数的确定
由传感器的温度和阻值关系式可知,当温度变化1℃时,Pt100的阻值变化约为0.38W,对应的电桥输出压差为:VD==0.001V。
若采用8位A/D转换器,分辨率为0.0196V,则运算放大器的*小放大倍数应为20倍。若测温的上限定为85℃ (倾点温度一般小于该温度), Pt传感器在85℃时的理论阻值为132.8W,电桥电压为1V,则VD=0.V≈0.083V,即运放的*大放大倍数为60.3。综合上述,可限定运放的放大倍数应在20~60之间。
2、误差分析
(1)桥电压Vbrg=1V时波动产生的误差[2]
从上面的分析可知,在某一温度时,Pt﹑R0不变,设电桥电压有ΔVbrg(mV)的变化,就会导致VD有 (mV)的变化。在0℃时,ΔR=5W,则VD==0.013ΔV(mV);若令ΔVD=1mV,则ΔV=76mV,即0℃左右,电桥电压Vbrg有76mV波动,会引起1℃的温度误差;同理在85℃左右,电桥电压有10mV的波动,则会引起1℃的温度误差。可见电桥电压Vbrg=1V时的波动系数给对测温带来的误差是很大的,应将其电压波动限制在1mV的级别上。
(2)运放非线性产生的误差
由于运放的放大倍数应在20~60之间,可将放大倍数定为50;若测温范围是0℃~85℃,则在0℃时,VD=13mV;在85℃时,VD=99.5mV,说明输入信号的范围在13mV~99.5mV之间变化。以平均值50作为放大倍数,此时输入信号为13mV,换算出来的输入电压信号值为12.48mV,ΔVD=-0.52mV,将会引起约1.5℃的误差。由此可见运放的非线性将会带来大约1.5℃的误差,在实际测量中,提高运放线性度以及运放放大倍数均可以减少由运放带来的误差。
(3)A/D转换器非线性带来的误差
在实际应用中会发现,对同一模拟输入信号Vi,经A/D转换得出的数字量会有±1位的跳变,这是由A/D转换器的判断误差造成的。A/D转换器的一位跳变对应的电压值,即为该八位A/D转换器的分辨率,为0.0196V=19.6mV;折算到输入端对应的电压值为0.392mV,将会产生0.392℃的温度误差。
(4)A/D转换器参考电压Vref带来的误差
A/D转换器采用逐次逼近式转换器AD0809,其转换速度较慢,如果输入信号在转换过程中不断变化,则易发生错误,使用时应加采样保持器,且只对本次采样的信号进行转换,以确保转换信号可靠性。另外,在比较转换过程中,Vref的变化会对输出的二进制代码有影响。在模拟输入信号不变的情况下,若Vref变大,会导致输出的二进制代码变小;反之,则变大,从而导致了温度误差。
五、PT100温度传感器注意事项与结论
使用中应注意,由于热惰性会使热电阻阻值变化滞后,为消除误差,应尽可能地减少热电阻保护管外径,适当增加热电阻的插入深度使热电阻受热部位增加。要经常检查保护状况,发现氧化或变形应立即采取措施,并定期进行校验。热电阻应避免放置在炉旁或距加热体太近,应尽量安装在震动小的地方;同时为便于施工和维护。安装位置应尽可能保持垂直,但在有原油流动时则必须倾斜安装,接线盒出孔应向下。
由上面的分析可得,为了提高温度测量的准确性,应使用1V电桥电源﹑A/D转换器的5V参考电源要稳定在1mV级;在价格允许的情况下,Pt100传感器﹑A/D转换器和运放的线性度要高。同时,利用软件矫正其误差,可以使测得温度的精度在±0.2℃。
在CPU的应用
一般的温度传感器(无论是热敏电阻或IC温度传感器)都需要很长的时间才能够将热传导到传感器的核心部份。根据National内部的实验结果,从CPU把热传导到空气中,再从空气中传导到温度传感器中,这个过程至少需要20分钟以上的时间。如果散热片(Heat Sink)没装好或风扇没转,不到二分钟的时间,使用者的CPU可能就会烧毁。
所以,CPU厂商(Intel和AMD)将一颗3904埋入芯片中,我们称这颗3904为远程二极管(Remote Diode),因为它离温度传感器本身很远。于是在短短几个毫秒(mini-second)中,温度传感器便能**地侦测到CPU内部的温度了。现在的技术要能做到1℃的**度已经不是很难的事,而且会变成PC和笔记本计算机的一个重要的趋势。
在LM86(图1)的运用实例中,通常T_CRIT_A的输出信号用来做过温度保护的功能,我们称之为热保护(Thermal Shutdown)。好处是当Windows或某一个应用程序造成系统死机时,LM86还能保护整个系统。而alert这个输出信号便可以做为软件中断,以达到ACPI规格的要求。另外,LM86除了能接到CPU的Remote Diode之外,本身内部还有一颗传感器(sensor),可以感测LM86所在的温度。所以,前面所提到的PC的系统温度和笔记本计算机的导热管,便可以使用LM86的本地传感器来侦测,不需要再花额外的成本去买另外一颗温度传感器。
* 绘图芯片或3D加速芯片 - LM26, LM88
通常绘图芯片也是不能被降频来执行的,否则画面会变成慢动作播放一般。那*好的方法还是加一散热风扇。在这里就有两个方式来激活和关闭风扇了,**个是便宜的做法,用LM26来侦测温度(如图2),等达到某一个界限时便激活风扇,若温度降下来了,便自动关闭风扇。**是采LM88来设计时髦的4段变速风扇控制器(如图3),让不同温度的状况能够有不同的转速。
* Power MOSFET - LM26
无论是PC的电源供应器或者是笔记本计算机中的DC-DC转换模块,内部都会有一颗很烫的Power MOSFET。虽然电源部份都有一个风扇随时在转动,但是我们必须设想一件事:万一风扇坏掉了,或者内部电路有发生短路的时候,怎么办?利用LM26的过温度保护功能,在极限温度时能够自动关闭电源而达到关闭(Shutdown)或甚至恢复(Recovery)的功能。
* PCMCIA - LM88
LM88本身并不被设计来做为风扇的4段变速控制器,而是能同时侦测二个待测物。一般笔记本计算机的PCMCIA插槽都有两个,所以LM88是用来侦测PCMCIA的*佳选择。由于LM88不需要用软件来控制,所以我们不用担心Windows死机或蓝屏幕(Blue Screen)的问题。
虽然在过去的PC和笔记本计算机中,温度传感器并不起眼,也没有工程师会去注意它的重要性,更不用说使用者能感觉到它的存在。但是,对整个系统这些重要芯片来说,它是很重要的保护者,尤其是当系统愈来愈高速且愈来愈热之后,它的重要性也会更加明显,并且能左右系统的稳定性。希望本文能够带给读者一个清晰的印象,究竟温度传感器在PC系统中是扮演哪些角色?也希望工程师在验证系统稳定性时,不妨考虑一下温度传感器的一些重要参数和功用。
产品留言
标题
联系人
联系电话
内容
验证码
点击换一张
注:1.可以使用快捷键Alt+S或Ctrl+Enter发送信息!
2.如有必要,请您留下您的详细联系方式!
1 测温原理
热电阻(如Pt100)是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换成电阻量的温度传感器。?
温度变送器通过给热电阻施加一已知激励电流****测量其两端电压的方法得到电阻值(电压/?电流),再将电阻值转换成温度值,从而实现温度测量。
2 三线接法原理
PT100的阻值与温度变化关系为:当温度为0℃时PT100电阻体的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。PT100热电阻一般适用于-200~600℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在工程控制中的应用极其广泛。
α=0.
t=100
t0=0
Rt0=100
将上面的参数带入上面的公式就得出Rt的值如下:
Rt=138.5=100(1+0.(100-0))**
如下图,增加一根导线用以补偿连接导线的电阻引起的测量误差。三线制要求三根导线的材质、线径、长度一致且工作温度相同,使三根导线的电阻值相同,即RL1=RL2=RL3。通过导线L1、L2给热电阻施加激励电流I,测得电势V1、V2、V3。导线L3接入高输入阻抗电路,IL3=0
热电阻的阻值Rt:
由上图Rt只与V1、V2、V3与I有关,而与电阻没有干系,由此可得三线制接法可补偿连接导线的电阻引起的测量误差。
通常采用恒流源的方式将pt100接入电路,即下面的右图方式。
恒流源电路的设计,有用三极管构成的,有用专门的恒流管,也有用价格低廉的器件通过比较巧妙的设计构成的,本系统是采用价格低廉的运放为核心来构成的,恒流效果十分理想,系统设计的恒流源电路见下图2-2所示。
上图中,由于运放虚地的结果,造成OP-07的反相输入端为0V,而图中1.5K电阻的下端由于运用精密的电压源LM336-2.5,外加调整电路,该点电压可调整为2.500V,而由于运放的输入阻抗极高,输入端可以认为不吸入电流,因此从1.5K电阻上流过的电流大小固定而且一定等于OP-07输出端流入温度传感器PT100的电流,从而达到恒流的效果,连接PT100两端的压差正好反映温度变化的信号送入后级的放大器。
这里值得注意的是恒流效果的好坏与下面几个因素有关,图示1.5K电阻的精度及温度稳定性要好,我们采用的是高精度高稳定的电阻;还有是一定要选择输入阻抗高的运放,包括产生虚地处的运放(图中OP-07)和后级的放大器(图中的AD620),否则较大的输入电流也将直接影响恒流的效果;最后一点是参考电压(图中是-2.5V)的稳定性要高,这里的参考电压采用是LM336-2.5V作为参考电压基准。
展开全文
Pt100热电阻作为温度测量传感器,通常与温度变送器,调节器以及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中-200℃-500℃范围内的液体,蒸汽和气体介质以及固体表面的温度。热电阻是利用物质在温度变化时本身电阻也随着发生变化的特性来测量温度的。当被测介体中有温度剃度存在时,所测的温度是感温元件所在范围介质中的平均温度。尽管各种热电阻的外形差异很大,但是它们的基本结构却大致相似,一般有感温元件,绝缘套管,保护管,和接线盒等主要部分组成。
Pt100热电阻的工作原理就是热电阻是利用物质在温度变化时,其电阻也随着发生变化的特征来测量温度的。当阻值变化时,工作仪表便显示出阻值所对应的温度值。有压簧式感温元件,抗振性能好;测温精度高;机械强度高,耐压性能好;进口薄膜电阻元件,性能可靠稳定等特点。
热电阻的测温原理与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。
目前主要有金属热电阻和半导体热敏电阻两类。目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。
中国最常用的有R0=102、R0=1009和R0=等几种,它们的分度号分别为Pt10、Pt100.Pt1000; 铜电阻有R0=502和R0=两种,它们的分度号为CU50和CU100。其中Pt100和CU50的应用最为广泛。
Pt100,就是说它的阻值在0度时为100欧姆,PT100温度传感器是一种以铂(Pt)作成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下: R=Ro(1+aT) Pt100温度传感器的主要技术参数如下:
测量范围:-200C~+850“C ;允许偏差值=C :A级土(0.15 +0.002Itl).B级土(0.30+0.0051tl) ;热响应时间电流s5mA。另外,Pt100温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。
pt100传感器接线图
打开APP阅读更多精彩内容
展开全文
PT100是一种正温度系数的热敏电阻。说到什么是正温度系数?就必须要结合负温度系数来讲了。随着温度的升高,电阻的阻值变大,就是正温度系数的热敏电阻,相反,如果随着温度的升高,电阻的阻值变小,就是负温度系数的热敏电阻。 PT100之所以应用很广泛,不仅是因为它可以测的温度范围宽(零下几十度到零上几百度),还因为它的线性度非常好。“线性度”,说的直白一点就是温度每变化一度,电阻的阻值升高的幅度是基本相同的。这样,就大大的简化了我们的程序。 不过,PT100也有它的缺点,就是温度每上升一度,阻值变化太小了,只有0.39欧姆。这样就需要硬件上提供高精度低噪声的转换。 网上流传有很多电路,很多电路其实都是不能当作产品用的。下面给大家提供一种高精度的电路,就是成本有些高,不过品质好。 对于测温电路,其实有很多可以值得研究的地方,小电路有大智慧。比如,你可以一眼就看出来这个电路不能测零下的温度吗?你可以计算出来这个电路可以测量的温度范围是从多少度到多少度吗?你可以修改这个电路,让它可以测到你所需要的温度范围吗?如果把反相(-IN)和同相(+IN)两条线调换,后果如何? 看看,你觉得电路简单,那么上面的问题都可以回答吗? 电路解释: 越简单的电路,稳定性就越好。该电路中的四个电阻都需要用0.1%精度的。电路只用了一个电桥和一个差分放大器。R2 R3 R4与PT100组成电桥电路,REF3030为电桥电路提供标准的3.00V电压。AD623用一个2K的放大反馈电阻精确的把电桥的压差放大51倍。(为什么是51倍,详见AD623的datasheet) PT100接法: 细心的小伙伴,会研究一下PT100的接法。PT100一般有两线和三线的传感器。因为线本身肯定有电阻,而上面也提到过,每变化一度,PT100只变化0.39欧姆,那么如果PT100的线很长的话,电阻就越大,线不同,电阻就不同,就肯定会大大的影响测出来的结果。所以,你现在就可以理解了,两线制的PT100,只适合短距离的应用。长距离的应用,就要用三线制。再让我们看看三线制是如何把电线上的电阻影响排除的。算了,还是下篇再讲吧,这个要画几个图才讲的清楚,时间不早了,懒得画了。 测温范围: 假设现在是0度,那么PT100的阻值就是100欧姆,在电路中的话,电桥的压差就是0V,所以最后也是0V,也就是测到0V的话,就是0度。假设现在零下一度了,PT100的阻值就小于100欧了,同相的电压就会比反相的电压小,得到的电压永远就0V了,所以这个电路就测不到0度以下。 AD623最大输出3.3V电压,3300/51=64.7mV,也就是说,电桥的压差,最大只能是64.7mV,再大的压差,AD623的输出也最大是3.3V了。反相臂的电压,固定是(3000/2100)*100=142.86mV,那么同相臂的电压最大只能是142.86+64.7=207.56mV,对应PT100的电阻就等于207.56/((3000-207.56)/2000)=148.66欧姆。 然后再查表,就可以看出,最大测温点差不多就是个127度。所以这个电路的测温范围就是0~127度。
下一篇: PLC、DCS、FCS三大控
上一篇: 电气控制线路图控制原