当前位置: 首页 > 传感测量产品 > 工业传感器 > 磁阻传感器

类型分类:
科普知识
数据分类:
磁阻传感器

gmr传感器应用:巨磁阻传感器原理及其应用

发布日期:2022-10-09 点击率:87


gmr传感器应用:巨磁阻传感器原理及其应用  第1张

gmr传感器应用:巨磁阻传感器原理及其应用

根据图4惠斯通电桥结构,很容易得出如下等式:
差分速度信号Vsig=Vp-Vn=Vb*R4/(R3+R4)-Vb*R2/(R1+R2) 式3-1
方向信号Vcenter=Icenter*R5 式3-2
图4:惠斯通电桥
本文引用地址:磁性传感器通过检测磁场变化来检测目标轮速度以及方向, 而传感器感应面和目标轮之间磁场产生方式主要有两种:一种是针对非磁性轮应用,如图5左所示。对于这种非磁性轮应用,设计时需要在传感器背面集成磁铁,即背磁方式(Back Bias)。还有一种是磁性轮,如图5右所示。
图5:磁性速度传感器应用
根据磁性传感器感应原理,霍尔传感器感应垂直于霍尔感应单元的磁场,即Z轴磁场。而巨磁阻传感器则感应的是平行于巨磁阻感应单元的磁场,即X,Y轴磁场。对于一些非磁性轮应用时,需要使用背磁方案。背磁产生垂直于感应单元的磁场,当传感器靠近目标轮时,磁场受到目标轮影响而弯曲,从而产生巨磁阻传感器能够检测到的平行磁场。
如前所述,巨磁阻传感器用于速度检测时,其磁场工作区间为线性区间,线性区间工作磁场强度大约在±5mT,因此在使用背磁方案时需要有磁路抑制技术用以减少平行磁场强度,避免巨磁阻感应单元达到饱和。
为了更方便巨磁阻速度传感器在非磁性轮的应用,英飞凌也提供集成背磁版本(Integrated Back Bias)的巨磁阻速度传感器,其背磁方式采用具有英飞凌相关专利技术的磁路抑制方案。
另外对于曲轴和凸轮轴等应用除了需要速度信息外,有时候还需要传感器提供位置信息。对于这类应用,需要特别注意的一点就是不能直接用巨磁阻传感器去替换霍尔传感器。因为根据其感应原理,差分式霍尔传感器信号在齿中切换,而巨磁阻传感器则在齿边沿切换。所以两种感应原理应用时存在着一定的相位偏移,这种相位偏移是不能够通过传感器硬件方式改变,只能通过软件方式进行调整。
相比于霍尔传感器,在速度检测方面巨磁阻传感器具有如下优点:
-更好相位精度及重复精度
-更高的灵敏度
-优异的气隙表现
-体积小
-更好的抗噪声能力
-工作温度范围更广
-成本低:可以使用便宜的磁性材料如铁磁性材料,相比霍尔传感器常用到的钕铁硼、钐钴等稀土材料,能减少相应成本。
2.角度检测
当巨磁阻传感器工作在磁场饱和区时可用于角度检测,巨磁阻感应单元阻值会随着外界磁场方向改变而改变。如图6所示为巨磁阻角度传感器感应单元结构,四个独立的巨磁阻感应单元组成一个惠斯通电桥,箭头方向代表参考层磁化方向。对于单核角度传感器总共有两个惠斯通电桥分别用来检测磁场正弦和余弦变化。其中VX代表输出余弦信号,而VY代表输出正弦信号。正弦或者余弦信号只能检测180°范围,通过正弦和余弦信号求正切值,再反正切计算后便可以检测360°范围的角度变化。
对于一些需要提供冗余设计的系统,英飞凌提供双核版本角度传感器。双核版本角度传感器其感应单元组成的惠斯通电桥组在结构上平行于感应平面X,Y轴,同心轴向垂直于Z轴,其巨磁阻感应单元结构大小相同,仅仅在Z轴方向存在一定气隙。这样的设计能够很好地确保同一感应平面上磁场变化方向相同,更好地保证了双核角度传感器数据准确性以及可靠性。
图6:巨磁阻角度传感器感应单元
为了满足不同角度检测应用,英飞凌巨磁阻角度传感器系列提供多种型号以满足不同需求。比如TLE5009输出正弦和余弦模拟量,而TLE5011输出正弦和余弦数字量。而TLE5012B则能够输出处理后的角度值,通过SPI协议输出角度以及速度信息,并针对不同应用还可提供IIF,HSM,PWM,SPC等接口。
巨磁阻角度传感器需要工作在合适的磁场强度,以TLE5012B为例,工作在-40℃至150℃下外部磁场强度规定为30mT至50mT范围。外部磁场强度过小或者过大都会增加额外的角度误差。如图7所示,绿色代表外部磁场,蓝色代表自由层磁化方向,红色代表参考层磁化方向。当外部磁场强度太弱时,会导致自由层磁化方向不能够很好地对齐外部磁场方向。当外部磁场强度太强时,会影响到参考层磁化方向。外界磁场强度过强并不会造成芯片的损坏,只是会影响检测精度,当外界磁场强度恢复到规定范围内时,检测精度又能够恢复到正常范围。
图7:外部磁场强度对巨磁阻角度传感器影响
总结
综上所述,英飞凌能够为汽车领域应用提供基于巨磁阻效应传感器,可用于速度检测和角度检测,其感应单元和信号处理单元被集成到一个芯片上,可提供更小体积以及优异性能。巨磁阻传感器具有体积小,灵敏度高,线性度好,温度范围高,耐恶劣环境,成本低等特点,将会越来越广泛地被用于各个领域。

gmr传感器应用:巨磁阻传感器原理及其应用_1

巨磁阻传感器原理及其应用
?
日期:
2013-11-15

作者:何喜富,传感器系统应用工程师,英飞凌科技(中国)有限公司

目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁
阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握磁性感应技术并应用于
产品中的半导体公司之一。

磁性传感器广泛应用于现代汽车中,如速度检测,角度检测,位置检测,电流
检测等。根据磁性感应原理,可分为霍尔原理及磁阻原理。其中磁阻式根据原
理又可分为常磁阻效应(
Ordinary Magneto Resistance, OMR
)、各项异性磁
阻效应(
Anisotropic Magneto Resistance

AMR
)、巨磁阻效应(
Giant
Magneto Resistance

GMR
)、超巨磁阻效应(
Colossal Magneto
Resistance

CMR
)、穿遂磁阻效应(
Tunnel Magneto Resistance

TMR
)、巨磁阻抗效应(
Giant Magneto impedance

GMI
)以及特异磁阻效
应(
Extraordinary Magneto Resistance

EMR
)等。

目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁
阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握有以上磁性感应技术并
应用于产品中的半导体公司之一。

相比于霍尔效应和各项异性磁阻效应,巨磁阻效应具有更好的灵敏度
,
更小的噪
声以及气隙表现
,
非常适合汽车领域中需要高精度以及较大工作气隙要求的应
用。目前英飞凌巨磁阻系列传感器涵盖速度及角度应用,本文主要介绍巨磁阻
传感器原理及其在速度检测和角度检测方面应用。

集成巨磁阻原理

所谓磁阻效应是指导体或半导体在磁场作用下其电阻值发生变化的现象,巨磁
阻效应在
1988
年由彼得
?
格林贝格(
Peter Grü
nberg
)和艾尔伯
?
费尔(
Albert
Fert
)分别独立发现,他们因此共同获得
2007
年诺贝尔物理学奖。研究发现在
磁性多层膜如
Fe/Cr

Co/Cu
中,铁磁性层被纳米级厚度的非磁性材料分隔开
来。在特定条件下,电阻率减小的幅度相当大,比通常磁性金属与合金材料的
磁电阻值约高
10
余倍,这一现象称为

巨磁阻效应

巨磁阻效应可以用量子力学解释
,
每一个电子都能够自旋
,
电子的散射率取决于自
旋方向和磁性材料的磁化方向。自旋方向和磁性材料磁化方向相同,则电子散
射率就低,穿过磁性层的电子就多,从而呈现低阻抗。反之当自旋方向和磁性
材料磁化方向相反时,电子散射率高,因而穿过磁性层的电子较少,此时呈现

gmr传感器应用:巨磁阻传感器应用

目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握磁性感应技术并应用于产品中的半导体公司之一。
磁性传感器广泛应用于现代汽车中,如速度检测,角度检测,位置检测,电流检测等。根据磁性感应原理,可分为霍尔原理及磁阻原理。其中磁阻式根据原理又可分为常磁阻效应(Ordinary Magneto Resistance, OMR)、各项异性磁阻效应(Anisotropic Magneto Resistance,AMR)、巨磁阻效应(Giant Magneto Resistance,GMR)、超巨磁阻效应(Colossal Magneto Resistance,CMR)、穿遂磁阻效应(Tunnel Magneto Resistance,TMR)、巨磁阻抗效应(Giant Magneto impedance,GMI)以及特异磁阻效应(Extraordinary Magneto Resistance,EMR)等。
目前磁性传感器在汽车领域应用中主要有霍尔效应,各项异性磁阻效应,巨磁阻效应以及穿遂磁阻效应。英飞凌是少数几个同时掌握有以上磁性感应技术并应用于产品中的半导体公司之一。
相比于霍尔效应和各项异性磁阻效应,巨磁阻效应具有更好的灵敏度,更小的噪声以及气隙表现,非常适合汽车领域中需要高精度以及较大工作气隙要求的应用。目前英飞凌巨磁阻系列传感器涵盖速度及角度应用
又称特大磁电阻,即GMR(Giant Magneto Resistance),GMR磁头是由4层导电材料和磁性材料薄膜构成的:一个传感层、一个非导电中介层、一个磁性的栓层和一个交换层。今天我们就来了解一下的应用领域。

巨磁阻传感器应用
01巨磁阻传感器应用于硬盘
巨磁阻效应的读出磁头,极大的提高了磁盘记录密度,极大提高了硬盘的容量,同时缩小了硬盘的体积。目前硬盘最大容量已经达到4TB,远远大于应用巨磁阻效应前的硬盘。
02巨磁电阻随机存取存储器(MRAM)
这是采用纳米制造技术,把沉积在基片上的SV-GMR薄膜或TMR薄膜制成图形阵列,形成存储单元,以相对两磁性层的平行磁化状态和反平行磁化 状态分别代表信息“1”和“0”;与半导体存储器一样,是用电检测由磁化状态变化产生的电阻值之差进行信息读出的一种新型磁存储器。MRAM潜在的重要优 点是非易失性,抗辐射能力强、寿命长。这些是DRAM、SRAM等半导体存储器所不具备的性能。同时,它又兼有后者具有的大容量、高速存取、低成本、高集 成度等特点。因此,MRAM不仅被军事和宇航业界所看重,而且在迅速普及的数码照相、移动电话及多媒体信息处理等广阔的民用市场中得到应用。正因为如此, 美、日、欧等发达国家和地区及高新技术产业界都十分重视这项新技术,正投巨资加快产品的商业化
03角度、位置传感器
用于数控机床,汽车测速,非接触开关,旋转编码器等领域。具有功耗小,可靠性高,体积小,价格便宜和更强的输出信号等优点。
04基于GMR传感器阵列的生物检测
GMR传感器比电子传感器更灵敏、可重复性强,具有更宽的工作温度、工作电压和抗机械冲击、震动的优异性能,而且GMR传感器的工作点也不会随 时间推移而发生偏移。GMR传感器的制备成本和检测成本低,对样本的需求量很小。由GRM传感器组成的阵列,还可以结合现有的IC工艺,提高整体设备的集 成度,进行多目标的检测,同时,对比传统的荧光检测法,磁性标记没有很强的环境噪声,标记本身不会逐渐消退,也不需要昂贵的光学扫描设备以及专业的操作人 员。
05巨磁阻传感器应用于军事领域
GMR传感器芯片在军事装备上也有广泛的应用,比如:超微磁场探测器,地磁场探测传感器,航天磁场方位传感器。

gmr传感器应用:巨磁阻传感器原理及其应用  第3张

gmr传感器应用:磁性传感器的应用都有哪些?

  磁性材料
  我国传感器产品仅有10大类、42小类、6000多个品种,品种繁多的磁性传感器只是其中一大类,它具有非接触测量、高可靠、坚固耐用、测量灵敏度高等基本特点。众所周知,磁场能够穿透许多非金属物质材料,因此无须直接接触目标物体就可触发交换过程。通过使用磁性导体(比如铁),磁场即可被传导到较远的距离,于是,信号就能从温度较高的区域传送出去。因此,人们把磁场、电流、应力应变、温度、光等引起敏感元件磁性能的变化转换成电信号,以这种方式来检测相应物理量的器件叫做磁性传感器。
  一、工业上用途广泛
  在工业应用领域,最流行的磁性传感器类型是电流传感器,包括分流电阻器、霍尔效应集成电路、电流感应变压器、开环与闭环霍尔器件以及磁通门传感器。
  1、电机
  在无刷电动机中,用磁性传感器来作转子磁极位置传感和定子电枢电流换向器,许多磁性传感器,霍尔器件、威根德器件、磁阻器件等都可以使用,但当前大量使用的,主要还是霍尔器件。另外磁性传感器还可以对电机进行过载保护及转矩检测;交流变频器用于电机调速,节能效果极好。由于磁编码器的使用显示出越来越多的优点,因此正在逐渐取代光编码器来对电机的转速进行检测和控制;例如,在电动车窗之中,传感器可以确定轴转动了多少圈,以控制车窗升降器的行程。传感器也可以探测到人手造成的异常负载情况,提供所谓的“防夹”功能,在碰到物体的时候,电机可以反转。用于直流电机换向和探测电流的电动助力转向传感器也是一个快速增长的应用,用于代替电动液压型系统。
  2、电力电子技术
  电力电子表技术是电力技术和电子技术的结合,可实现交直流电流的相互变换,并可在所需的范围内实现电流、电压和频率的自由调节。采用这些技术和产品,可做成各种特殊电源(如UPS、高频电源、开关电源、弧焊机逆变电源等)和交流变频器等产品。这些变频装置的核心,是大功率半导体器件。以磁性传感器为基础的各种电流传感器被用来监测控制和保护这些大功率器件。霍尔电流传感器响应速度快,且依靠磁场和被控电路耦合,不接入主电路,因而功耗低,抗过载能力强,线性好,可靠性高,既可作为大功率器件的过流保护驱动器,又可作为反馈器件,成为自控环路的一个控制环节。使用变频技术可以大量节能,目前国外使用的电能95%是经过变换来的,国内变频技术虽已受到高度重视,但仅有5%的电能经过这种变换,可见具其后续改造空间之大,将需求大量的电流传感器,这将是磁性传感器的又一巨大的产业性应用领域。
  3、能源管理
  电网的自动检测系统需采集大量的数据,经计算机处理之后,对电网的运行状况实施监控,并进行负载的分配调节和安全保护。自动监控系统的各个控制环节,都可用以磁性传感器为基础的电流传感器、互感器等来实现。霍尔电流传感器早已在电网系统中得到应用。用霍尔器件作成的电度表也已从研制转向实用化,它们可自动计费并可显示功率因数,以便随时进行调整,保证高效用电。
  4、磁信息记录装置
  磁信息记录装置除磁带、磁盘等之外,还有磁卡、磁墨水记录帐册、钞票的磁记录等,对磁信息存储和读出传感器有巨大需求。目前,感应磁头,薄膜磁阻磁头,非晶磁头等都获得了大量的使用。随着记录密度的提高,例如高到100G字节,需要更高灵敏度和空间分辨力的磁头。以多层金属薄膜为基础的巨磁阻磁头、用非晶合金丝制作的非晶合金磁头、巨磁阻抗磁头等正展开激烈的竞争。
  5、交通控制
  目前,国内外都在加强行车支持道路系统(AHS)、智能运输系统(].TS)和道路交通信息系统(VICS)等的开发与建设。在这些新系统中,高灵敏度、高速响应微型磁传感器大有用武之地。例如,用分辨率可达InT的GMI和SI传感器,可构成ITS感器(作高速路上的道路标志,测车轮角度,货车近接距离),汽车通过记录仪(测通行方向、速度、车身长度、车种识别)、停车场成批车辆传感器、加速度传感器(测车辆通过时路桥的振动等)等。在智能交通系统,如果你在公路上放置一个磁性传感器,任何一辆车在公路上开的时候,车走过的轨迹就能记录下来,从而可以控制高速公路的车流。
  去年动车出事以后,国家交通部为防止类似事故的发生,设计了许多方案,其中一个很简单方案,就是在动车沿线每隔两公里铺一个磁性传感器,这是一个单独系统,所以当动车没电的时候信号就可以自动传到调度中心。
  美国的NVE公司已经把GMR传感器用在车辆的交通控制系统上。例如,放置在高速公路边的GMR传感器可以计算和区别通过传感器的车辆,如果同时分开放置两个GMR传感器,还可以探测出通过车辆的速度和车辆的长度,当然GMR也可用在公路的收费亭,从而实现收费的自动控制。
  二、在汽车中的应用无处不在
  磁性传感器在汽车工业中的应用尤其普遍,例如包括汽车安全、汽车舒适性、汽车节能降耗等。单是在汽车车身应用领域,一辆车使用的磁性传感器与开关平均数量,就将从2008年的6.7颗,成长至2013年的9.4颗。据介绍,汽车领域占据了磁传感应用市场大约70Y0以上的份额。它在汽车中主要被用于车速、倾角、角度、距离、接近、位置等参数检测以及导航、定位等方面的应用,比如车速测量、踏板位置、变速箱位置、电机旋转、助力扭矩测量、曲轴位置、倾角测量、电子导航、防抱死检测、泊车定位、安全气囊与太阳能板中的缺陷检测、座椅位置记忆、改善导航系统的航向分辨率。在节能降耗中,尤其是在制造商目前面临减少点滴碳排放或其它污染物压力的时候,这方面的一个重点领域是马达,马达正在从存在摩擦力的“一刻不停”的滑轮系统向电子马达转变,后者可以按需控制。与此同时,电子马达向效率更高和更加可靠的有刷DC马达转变,而磁性传感器的应用能够让马达控制或换向更加精确。此外,汽车防抱死刹车系统(ABS)中的基本轮转速感测、转向系统中的扭矩感测、电子线控节气门系统和电池监测、智能电扇等都有着磁性传感器的身影。在混合动力电动汽车中,磁性传感器用于监控辅助电机逆变器。逆变器用于把电池直流电转换成电机的交流电。这种转换需要使用三个电流传感器,电机的每个相位都需要一个。高级汽车需要使用霍尔IC和AMR传感器。中低档轿车中有10多种电机,如风扇冷却、交流发电机以及风挡雨刷;豪华轿车拥有将近100个电机,其中包括用于空调送风机、电子转向与油门控制的传感器,用于自动化与新型双离合系统的传动传感器,以及用于座位位置调整、天窗、转速表、前灯位置调整、靠枕的传感器,甚至用于根据空气质量信息来控制进气风门。
  三、在医疗领域应用中发挥关键作用
  随着人口老龄化趋势的日渐明显,用以辅助健康和监护的医疗技术变得愈发重要。医疗
  传感器的应用和推广大大降低了人工成本和错误的产生,同时也提高了自动化程度和精确度,
  这一切使得持续的监控和治疗成为可能。磁性传感器在医疗领域中的应用,尽管规模要小于
  工业领域,但却能够在各种场合以各种方式辅助病人护理和监控:救护车,医院和家庭护理
  等。无论是在手术过程中,重症监护室,医院复健护理,还是在家庭护理方面,都提供了有
  效的方式以控制运动、气流、探测血压以及用药等挽救生命或者提高生命质量。它主要用于
  使用换向传感器的医疗设备之中用于电机控制,比如呼吸机、输液、胰岛素和肾脏透析机等
  方面的应用;电磁编码器霍尔传感器用于注射泵中检测流速以确定注射器是否为空和注射器
  是否堵塞的(应用于监测血液再造系统、自动血样分析系统)。德国卡塞尔大学科学家研制
  的一种带磁场的微型传感器通过遥控牵引磁化纳米生物分子,可将血液中极少量的特定蛋白
  质分子检测出来,从而通过正常的血液分析取代脊髓液检查。磁性传感器在医疗领域应用的
  另一个例子是用于准备样本的简单离心机,它用来帮助控制小型电机,使其变得更加安静和
  可靠。在助听器领域,巨磁阻传感器IC (GMR)与霍尔及簧片开关竞争。
  四、在无线一消费领域市场诱人
  随着消费电子在全球的风靡,磁性传感器在消费电子中的应用表现也十分强劲,丝毫不逊色。例如手机、笔记本电脑、电子玩具、电子罗盘等中都有着非常广泛的应用。MEMS传感器与磁传感器在应用中互相促进,这对于推动磁性传感器在消费电子市场的逐步增长起着一定贡献。虽然磁阻传感器发展历程已经很漫长,技术相对成熟,但仅作为电子罗盘的单独应用,在以前并不被人们很看好,而现在它与MEMS的结合,会在导航市场成为一个亮点。由于MEMS和磁阻传感器在功能上可以互相补充,它们的结合使导航产品更加精准。如果把陀螺仪、加速度和磁传感器三种传感器集成在一起,三者在功能上互相辅助,则构成了功能更强大的惯性导航产品。
  在多轴测量电子罗盘中,磁性传感器担当着重要部件的角色。而目前具备GPS系统的手机与平板电脑都会采取多轴测量电子罗盘做为标配,这也让磁性传感器在无形之中搭上了消费电子的快车。目前磁性传感器在消费电子中的应用,还让游戏控制器、笔记本、数码相机等具有了地理标签功能。
  五、在航空、航天、卫星通信及军事工业大显身手
  高灵敏度和低磁场的传感器可以用在航空、航天及卫星通信技术上。大家知道,在军事工业中随着吸波技术的发展,军事物件可以通过覆盖一层吸波材料而隐蔽,但是它们无论如何都会产生磁场,因此通过GMR磁场传感器可以把隐蔽的物体找出来。GMR磁场传感器可以应用在卫星上,用来探测地球表面上的物体和底下的矿藏分布。电子罗盘在武器/导弹导航(航位推测),航海和航空的高性能导航设备中功不可没。如果在水雷或地雷上安装磁性传感器,由于坦克或者军舰都是钢铁制造的,在它们接近(无须接触目标)时,传感器就可以探测到磁场的变化使水雷或地雷爆炸,提高了杀伤力。美国海军于20世纪80年代初开始研制Terfenol-D水下声纳,由永磁体产生偏磁场,螺线管产生交流磁场,随着磁场的变化环就膨胀收缩将声波发射出去,利用水声传播特性对水中目标进行传感探测,用于搜索、测定、识别和跟踪潜艇和其他水中目标,进行水声对抗,水下战术通信、导航和武器制导、保障舰艇、反潜飞机的战术机动和水中武器的使用等。
  六、在环境监测中的应用前景广阔
  环境保护的前提是对各个环境参数(温度、气压、大气成份、噪声…….)的监测,这里需要使用多种大量的传感器。采用强磁致伸缩非晶磁弹微型磁传感器和感应式磁传感器,可以同时测量真空或密闭空间的温度和气压,而且不用接插件,可以遥测和远距离访问。在食品包装、环境科学实验等方面,应用前景也很广阔。
  七、在其它工业应用方面也引人关注
  在其它工业应用方面,磁性传感器可用于电脑服务器等机器的不间断电源(UPS)、焊接系统、机器人技术、火车运输基础设施、非道路车辆和叉车。在许多测量50安培以下电流的应用中,比如住宅太阳能逆变器应用或小型UPS系统,使用简单的resistive bar或分路(shunt)。但随着所测电流强度的上升,shunt变得笨重和昂贵。在大型变频电机等电流较高的应用中,开环与闭环霍尔传感器在一个小型封装中使用霍尔效应IC;也可以提高集成度,在封装中包含一个专用集成电路。霍尔IC同样用于工业洗衣机变频器控制应用之中。除了电流传感器,独立霍尔效应IC或磁阻传感器开关也存在规模一定的市场,这些器件用于电机整流,以降低纹波和改善性能,或者用于位置测量等…。

下一篇: PLC、DCS、FCS三大控

上一篇: 电气控制线路图控制原

推荐产品

更多