发布日期:2022-10-09 点击率:100
原标题:加速度传感器种类剖析及适用性
本文内容转载自《中国检验检测》2019年第4期,版权归《中国检验检测》编辑部所有。
徐文骏
上海航天电子有限公司/上海科学仪器厂
0 引言
加速度传感器是工程振动测量中的最重要因素。在测试系统中,传感器是数据采集分析的第一环节,因此,能否正确选择和使用传感器将直接影响到测量信号的质量和精度。虽然从事工程振动的人员都知道这个概念,但在实际应用中却往往因为各方面的原因而无法正确判断传感器是否真实反映了被测信号。另一方面在科技不断发展的趋势下,环境模拟的试验条件要求越来越高,与之对应传感器的技术指标也不断提高,从而使之前广泛应用的单一标准传感器发展到如今类别的多样化,也对工程人员在应对不同试验要求的传感器选择上增加了相应的难度。
1 传感器的种类
目前市场中常见的加速度传感器分为三大类别,分别为压电式、压阻式和电容式。
1.1 压电式
压电式加速度传感器的构造是利用了弹簧质量系统的原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与此力成正比的电荷信号,从而能采集到数据。
压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及不需要外界电源等特点,是目前被工程人员使用最为广泛的振动测量传感器。虽然压电式加速度传感器相对来说结构比较简单,诞生时间也较长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此,在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。
1.2 压阻式
压阻式加速度传感器的敏感芯体为半导体材料制成的电阻测量电桥,其结构动态模型仍然是弹簧质量系统。现代微加工制造技术的发展使压阻式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。同时压阻式加速度传感器测量频率范围也可从直流信号到几十千赫兹的高频测量。压阻式传感器的最大亮点就是超小型化的设计,可以在很多狭小的空间内使用。需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。压阻式加速度传感器的另一缺点是受温度的影响较大,使用的传感器都需要进行温度补偿。在价格方面,使用特殊敏感芯体制造的压阻式传感器成本将远高于压电型加速度传感器,通常要达到好几倍以上。
1.3 电容式
电容式加速度传感器的结构形式也采用了弹簧质量系统。当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值产生变化。电容式加速度计于其他类型的加速度传感器相比具有灵敏度高、零频响应、环境适用性好等特点,尤其是受温度的影响比较小,能够运用于很多现场环境苛刻的数据采集;但不足之处表现在信号的输入与输出为非线性,量程有限,并且受电缆的电容影响,因为电容传感器本身是高阻抗信号源,因此,输出信号往往需要通过后继电路给予改善,对屏蔽电缆线有着很高的使用要求。在实际应用中电容式加速度传感器大多用于低频测量,其通用性远不及压电式加速度传感器,且成本也要比压电式加速度传感器高出许多倍。
2 压电式加速度传感器的敏感芯体材料和结构形式
2.1 压电材料
压电材料一般可以分为两大类,即压电晶体和压电陶瓷。压电型加速度计最常用的压电晶体材质为石英,因为石英的材料特性是工作温度范围宽,性能稳定,所以在实际应用中经常被用作标准传感器的压电材料。
由于石英的压电系数比其他压电材料低很多,所以通用型的压电传感器都采用压电陶瓷作为主材料。陶瓷中的锆钛酸铅是目前压电加速度计中最经常使用的压电材料。其特点为具有较高的压电系数和居里点,各项机电参数随温度时间外界条件的变化相对较小。如图1所示。
图1 石英压电传感器内部结构
但是就同一种的压电陶瓷而言,虽然都具有相同的基本特性,但由于制作工艺不同可以使两个相同材料的压电陶瓷的具体性能指标相差甚大。这种现象在国产传感器和进口传感器的互相比较上尤为明显。两者虽然材料不同,但是在构造上却是近似一致。如图2所示。
图2 陶瓷压电传感器内部结构
2.2 传感器敏感芯体的结构形式
压电加速度传感器的敏感芯体一般由压电材料和附加质量块组成,当质量块受到加速度作用后便转换成一个与加速度成正比并加载到压电材料上的力,而压电材料受力后在其表面产生一个与加速度成正比的电荷信号。压电材料的特性决定了作用力可以是受正应力也可以是剪应力,压电材料产生的电荷大小随作用力的方向以及电荷引出表面的位置而变。根据压电材料不同的受力方法,常用传感器敏感芯体的结构一般有以下三种形式:
a) 压缩形式:压电材料受到压缩或拉伸力而产生电荷的结构形式。压缩式敏感芯体是加速度传感器中最为传统的结构形式。其特点是制造简单方便,能产生较高的自振谐振频率和较宽的频率测量范围。而最大的缺点是不能有效地排除各种干扰对测量信号的影响。
b) 剪切形式:通过对压电材料施加剪切力而产生电荷的结构形式。从理论上来说在剪切力作用下的压电材料所产生的电荷信号受外界干扰的影响甚小,因此,剪切结构形式是最适合广泛使用的加速度传感器敏感芯体。然而在实际制造过程中,要确保剪切敏感芯体的加速度计具有较高和稳定的频率测量范围却是传感器制造工艺中最为困难的一个环节。要得到高参数指标只能采用进口记忆金属材料的紧固件从而保证传感器具有稳定可靠的谐振频率和频率测量范围。
c) 弯曲变形粱形式:压电材料受到弯曲变形而产生电荷的结构形式。弯曲变形粱结构可产生比较大的电荷输出信号,也较容易实现控制阻尼;但因为其测量频率范围低,更由于此结构不能排除因温度变化而极易产生的信号漂移,所以此结构在压电型加速度计的设计中很少被采用。
3 压电式加速度传感器的信号输出形式
3.1 电荷输出型
传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。实际使用中传感器输出的高阻抗电荷信号必须通过二次仪表将其转换成低阻抗电压信号才能读取。由于高阻抗电荷信号非常容易受到干扰,所以传感器到二次仪表之间的信号传输必须使用低噪声屏蔽电缆。由于电子器件的使用温度范围有限,所以高温环境下的测量一般还是使用电荷输出型。
3.2 IEPE输出型
IEPE型压电加速度计既工程人员称之的ICP型压电加速度计,也称为低阻抗电压输出型加速度计。
压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出,而IEPE型传感器则为二线输出形式,采用恒电流电压源供电,直流供电和信号使用同一根线的方式,因为直流电部分在恒电流电源的输出端需要通过高通滤波器滤去杂波信号。
IEPE型传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和测量 距离远,特别是随着科技的发展,现在已经有很多新型的数采系统很多都已配备恒流电压源,因此,IEPE传感器能与数采系统直接相连而不需要任何其他二次仪表,在振动测试中IEPE传感器已逐渐取代传统的电荷输出型压电加速度计。
4 小结
加速度传感器随着科技的发展,种类不断的增多,从最早的进口制造商B&K,到现在国产的制造商B&W,光是力学传感器的种类以及超过了3位数,并且随着科技的发展,越来越多的苛刻试验的顺势而生,传感器的原理、分类以及适用性事工程人员所要了解的必修课,只有了解透彻,才能更好的完成试验工作。返回搜狐,查看更多
责任编辑:
压电式加速度传感器的工作原理
压电式加速度传感器的传感元件为压电晶体。若沿压电晶体的极化方向施加一外力使其变形,则压电晶体内部发生极化,受力的两端面出现极性相反的电荷,若撤去外力,则压电晶体恢复到初始状态,这就是正压电效应。若沿压电晶体的极化方向施加一电场,则压电晶体出现变形,若撤去电场,则压电晶体恢复到初始状态,这就是逆压电效应。压电式加速度传感器就是利用了压电晶体的正压电效应,将机械能转换为电能,从而实现对振动加速度信号的测量。
压电式加速度传感器常见的结构形式有中心压缩式、环形剪切式、三角剪切式。测量被测对象振动大小时,需选择测点并将加速度传感器安装牢靠。将压电式加速度传感器的压电晶体看做理想弹性体,忽略压电晶体与壳体之间连接胶层的质量,只考虑胶层的阻尼系数,并将压电式加速度传感器一端简化为自由端、一端简化为固定端,则可得到其工作时的力学简化模型,力学简化模型如图1所示。压电式加速度传感器的振动方程为mx2+cx1+kx=F(t)
式中: m为压电晶体的质量kg;c为胶层的阻尼系数N·s /m;k为压电晶体的刚度系数N/m;x为压电晶体的位移m;x1为压电晶体的速度m/s;x2为压电晶体的加速度m/s2;F(t)为作用于压电式加速度传感器的外力N。
压电式加速度传感器的结构
压电式加速度传感器的结构型犬有压缩型、剪切型和弯曲型三种,图11—5为压缩型加速度计结构示意图。其敏感元件是压电晶体片4,晶体片上压一个质量块3,用一个刚度较大的弹簧2对这个质量块施加一个预紧力,并将它们绽在一个带有厚的基座6的金属外壳1内。当加速度计安装在被测扳动物体上而随之板动时,质量块就产生一个正比于振动加速度的力作用在压电晶体片上,根据正压电效应,在晶体片两相对的表川上就产生交变的电材,共大小与作用力成正比,田质量块的质量固定不变,所以晶体片上的电荷与扳动加速度成正比.
描述
压电式加速度传感器应用场合
在现代生产生活中被应用于许许多多的方面,如手提电脑的硬盘抗摔保护,目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。压电加速度传感器还应用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面。
压电式加速度传感器的选择
一、灵敏度的选择
制造商在产品介绍或说明书中一般都给出传感器的灵敏度和参考量程范围,目的是让用户在选择不同灵敏度的加速度传感器时能方便地选出合适的产品,最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度传感器自身的非线性影响和后续仪器的最大输出电压。
估算方法:最大被测加速度×传感器电荷(电压)灵敏度,其数值是否超过配套仪器的最大输入电荷(电压)值。建议如已知被测加速度范围可在传感器指标中的“参考量程范围”中选择(兼顾频响、重量),同时,在频响、质量允许的情况下,尽量选择高灵敏度的传感器,以提高后续仪器输入信号,提高信噪比。在兼顾频响、质量的同时,可参照以下范围选择传感器灵敏度:以电荷输出型压电加速度传感器为例:
1. 土木工程和超大型机械结构的振动在0.1g-10g(1g=9.81m/s2)左右,可选电荷灵敏度在300pC/ms-2~30pC/ms-2的压电加速度传感器,属于电荷输出型压电加速度传感器。
2. 特殊的土木结构(如桩基)和机械设备的振动在100ms-2~1000ms-2,可选择20pC/ms-2~2pC/ms-2的加速度传感器。
3. 冲击,碰撞测量量程一般ms-2~ms-2,可选则传感器灵敏度是0.2pC/ms-2~0.002pC/ms-2的加速度传感器。
二、频率选择
制造商给出的加速度传感器的频响曲线是用螺钉刚性连接安装的。
一般将曲线分成二段:谐振频率和使用频率。使用频率是按灵敏度偏差给出的,有±10%、±5%、±3dB。谐振频率一般是避开不用的,但也有特例,如轴承故障检测。选择加速度传感器的频率范围应高于被测试件的振动频率。有倍频分析要求的加速度传感器频率响应应更高。土木工程一般是低频振动,加速度传感器频率响应范围可选择0.2Hz~1kHz,机械设备一般是中频段,可根据设备转速、设备刚度等因素综合估算振动频率,选择0.5Hz~5kHz的加速度传感器。如发电机转速在3000rms时,除以60s此时它的主频率为50Hz。碰撞、冲击测量高频居多。
加速度传感器的安装方式不同也会改变使用频响(对振动值影响不大)。
安装面要平整、光洁,安装选择应根据方便、安全的原则。我们给出同一只RC6500S加速度传感器不同安装方式的使用频率:螺钉刚性连接(±10%误差)10kHz;环氧胶或“502”粘接安装6kHz;磁力吸座安装2kHz;双面胶安装1kHz。由此可见,安装方式的不同对测试频率的响应影响很大,应注意选择。加速度传感器的质量、灵敏度与使用频率成反比,灵敏度高,质量大,使用频率低,这也是选择的技巧。
三、内部结构
内部结构是指敏感材料晶体片感受振动的方式及安装形式。
有压缩和剪切两大类,常见的有中心压缩、平面剪切、三角剪切、环型剪切。
中心压缩型频响高于剪切型,剪切型对环境适应性好于中心压缩型。如配用积分型电荷放大器测量速度、位移时,最好选用剪切型产品,这样所获得的信号波动小,稳定性好。
四、内置电路
内置的概念是将放大电路置于加速度传感器内,成为具有电压输出功能的传感元件。它可分双电源(四线)和单电源(二线、带偏置,又称ICP)两种,下面所指内装电路专指ICP型。目前,内置电路传感器一般是与数据采集仪配套,在国内使用较多的方面是用于机械故障、桩基检测,不少在线监测项目上也在使用该类产品。ICP型加速度传感器的供电和信号输出共用一根线。其特点是:低阻抗输出,抗干扰,噪声小,性能价格比高,安装方便,尤其适于多点测量,稳定可靠、抗潮湿、抗粉尘、抗有害气体。内置电路传感器灵敏度的选型计算:
被测加速度值(g)=最大输出电压(mV)/传感器灵敏度(mV/g)
如选用目前最为通用的100mV/g,可测50g以内振动,如测量100g,则用50mV/g的加速度计,其余以此类推。
五、环境影响
某些测试现场的环境较为恶劣,考虑的因素较多,如防水、高温、安装位置、强磁电场及地电回路等,均会给测量带来很大的影响。
防水:防水有两个概念,浅层防水和深层防水,尤以深层防水为难,如三峡工程永久船闸闸门的振动监测,水深近百米,它涉及地回路干扰、高压渗水、导线防护、长期可靠性等诸多问题。
高温:多数厂商给出的传感器温度范围为可用值,而不是高温状况的灵敏度,实际上,高温时灵敏度偏差较大,特殊用户应向厂商索取专用的高温时的灵敏度指标,灵敏度指标是保证测试准确的关键。
位置限制:加速度传感器永久安装在现场会受到人为碰撞,应选择工业型长期监测加速度传感器,它采用外加防护罩,三角法兰安装,具有对地绝缘、防尘的作用。对出线方向有要求的可向制造商提出。对于不能触及的部位,可用手持式加速度传感器(带长探针)。
绝缘、地电回路及磁电场:对磁电场较强的测试现场,应选择特殊外壳材料的加速度传感器和专用导线,此类研究国内还比较少见。对于两点接地、潮湿等现场,要解决好测试干扰则可采用浮地或绝缘型加速度传感器,同时要考虑导线接头的防护。为了克服两点或多点接地产生地电回路电流对测试的影响,可以选用浮地或绝缘传感器。没有特殊要求且干扰不大的工况,可用绝缘型加速度传感器,而永久型监测或干扰大的工况则应采用浮地型。这二种命名的区别在于绝缘型产品的外壳为信号地,而浮地型产品的外壳为屏蔽层。
附加质量:在振动结构上安装的加速度传感器的质量要小于被测点的自身动态质量的1/10即可,认为对被测信号的影响可以忽略。
六、配套仪器
压电类加速度传感器如是电荷输出的,可与任何一种高阻输入的电荷放大器或具有电荷前置功能的采集器相配,电荷放大器种类较多,有单台、多路、积分、准静态,这都要根据测量要求来确定。
也有特例,如直接将压电传感器的输出信号接入具有一定高阻性能的三次仪表(如示波器),同样可测得信号,但因阻抗匹配不够,只能是定性了解动态状况。内装IC放大器加速度传感器(ICP型)专门有恒流适配器,一台恒流适配器可供多只加速度传感器的恒流供电及信号输出。对于提供恒流源供电的数据采集仪器,可以将该类型传感器直接接入数据采集仪器。双电源供电的加速度传感器可由采集器提供双电源或用双路直流稳压电源供电。目前ICP加速度传感器的典型供电方式为:24V4mA恒流。
打开APP阅读更多精彩内容
压电振动传感器通过安装在电力设备表面的振动传感器获得振动信号,从中提取特征量后结合数据处理及故障诊断方法,可有效评估运行状态,被广泛应用于电力设备在线监测或临时性检测。
压电振动传感器是感知振动信号的传感器件,按用途可分为压电加速度传感器、压电力传感器、压电力矩传感器、压电应力传感器等,其中以压电加速度传感器使用最为广泛。
按不同振动方式和传感器结构,压电加速度传感器可分为压缩式(d33型)、剪切式(d15型)、弯曲式(d31型)等。当驱动力较大而结构形变不大时,选择d33型转换;驱动力较小而形变大时,考虑选择d31型转换。
剪切式压电加速度传感器如图1所示。其结构与压缩式传感器类似,压电敏感元件处于中心柱和质量块中间,采用压缩环或螺栓提供预压力。在接收外部振动时,质量块产生的剪切应力直接作用在敏感元件上。
由于敏感元件和传感器基座分离,敏感元件受温度影响较小。压电元件围绕固定中心支柱径向安装,惯性质量块围绕这些元件安装。整个结构通过最常用的粘接方式连在一起,剪切型加速度通常表现出更高的基座应变灵敏度和温度瞬态响应灵敏度。
图1 剪切式压电加速度传感器
也有课题组和企业针对复杂空间测量需求,研发多模式混合加速度传感器和三轴加速度传感器。
GaoXiangyu等基于PNN-PZT压电材料,设计了同时具有d33和d31振动模式的钹形压电传感器;HanRuihua等设计基于PZT压电薄膜的四悬臂梁弯曲式三轴加速度传感器,谐振频率230.46Hz,X、Y、Z三轴电荷灵敏度分别达到23.85pC/g、4.62pC/g和4.62pC/g。飞思卡尔、西人马等公司也分别推出2.7kHz带宽的三轴模拟加速度传感器和灵敏度(±10%)100mV/g、频率响应(±5%)10Hz~6kHz的压缩式三轴加速度传感器。
本文编自2021年第7期《电工技术学报》,论文标题为“压电材料与器件在电气工程领域的应用”,作者为姚睿丰、王妍 等。
举报/反馈
下一篇: PLC、DCS、FCS三大控
上一篇: 电气控制线路图控制原