当前位置: 首页 > 工业电子产品 > 无源元器件 > 电容

类型分类:
科普知识
数据分类:
电容

电容式传感器的电路图:电容式传感器工作原理

发布日期:2022-10-09 点击率:30


电容式传感器的电路图:电容式传感器工作原理

  导读:本文主要介绍的是电容式传感器的工作原理,感兴趣的童鞋们快来学习一下吧~~很涨姿势的哦~~
本文引用地址:电容式传感器工作原理--简介
  电容式传感器是一种把被测的机械量转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。电容式传感器可分为极距变化型、面积变化型、介质变化型三类。极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。面积变化型一般用于测量角位移或较大的线位移。介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。
2.电容式传感器工作原理--优缺点
  电容器传感器的优点是结构简单,价格便宜,灵敏度高,过载能力强,动态响应特性好和对高温、辐射、强振等恶劣条件的适应性强等。缺点是输出有非线性,寄生电容和分布电容对灵敏度和测量精度的影响较大,以及联接电路较复杂等。70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。电容式传感器是一种用途极广,很有发展潜力的传感器。
3.电容式传感器工作原理
  电容式传感器的电容检测元件是根据圆筒形电容器原理进行工作的,电容器由两个绝缘的同轴圆柱极板内电极和外电极组成,在两筒之间充以介电常数为e的电解质时,两圆筒间的电容量为C=2∏eL/lnD/d,式中L为两筒相互重合部分的长度;D为外筒电极的直径;d为内筒电极的直径;e为中间介质的电介常数。在实际测量中D、d、e是基本不变的,所以电容式传感器具有使用方便,结构简单和灵敏度高等特点。
  拓展阅读:
  1.湿度传感器工作原理
  2.常见传感器分类和工作原理
  3.电容式湿度传感器基础知识

电容式传感器的电路图:电容式传感器的工作原理

电容式传感器的感应面由两个同轴金属电极构成,很象“打开的”电容器电极,该两个电极构成一个电容,串接在RC振荡回路内。
 电源接通时,RC振荡器不振荡,当一目标朝着电容器的电靠近时,电容器的容量增加,振荡器开始振荡。通过后级电路的处理,将振和振荡两种信号转换成开关信号,从而起到了检测有无物体存在的目的。该传感器能检测金属物体,也能检测非金属物体,对金属物体可以获得最大的动作距离,对非金属物体动作距离决定于材料的介电常数,材料的介电常数越大,可获得的动作距离越大。
 云阳电子主要产品有:智能电力仪表、智能温控表/调节仪、安全栅/信号隔离器、电量/温度变送器、时间继电器/定时器/累时器、智能电工控制仪表、计数器/记米器/长度计、频率/转速/线速度表、智能传感器仪表称重控制仪表、LED/LCD数字面板表头、接近开关、数字温度计、智能温湿度控制仪表/温湿度计、AC-DC/DC-DC电源、仪表配件测试/老化/实验控制系统、开发非标电子产品、温度/压力等变送器表头等。如果您有电子产品的需求,欢迎联系我们:余先生,手机: (微信同号)。

电容式传感器的电路图:电容式传感器工作原理  第1张

电容式传感器的电路图:电容式传感器的检测方法及测试原理

电容式传感器一般是将被测量的变化量转换为电容量的变化。目前,基于这种原理的各种类型的传感器已在测量加速度、液位、几何孔径等方面得到了广泛的应用。但以电容为变化量的传感器(尤其是MEMS传感器),其电容变化范同往往只有几个pF,甚至几个fF。这便对电容检测的精度提出了很高的要求,尤其是在传感器的研发过程中,往往需要极高精度的电容检测设备对传感器进行测试与调校。但是一直以来国内外都缺乏能够对微小电容进行实时检测的专用仪器,普遍的做法是针对所研发的传感器自行设计、制做专门的电容检测电路,这无疑增加了传感器设计的难度与工作量。针对这一问题,我们设计了通用的电容式传感器检测系统。该系统能够对微小电容进行实时检测,并可以通过上位机实现实时显示、存储等功能。
1 总体设计
电容式传感器的检测方法主要有:设计专用ASIC芯片;使用分立元件通过电容桥、频率测量等原理实现测量;使用通用电容检测芯片将电容转换为电压或其他量等。从技术难度、测量精度等多方面考虑,本系统采用集成电容检测芯片来完成对电容式传感器的检测。系统结构框图如图1所示。电容检测芯片选用Irvine Sensor公司的MS3110。MS3110将电容量转换为电压量输出(量程为0~10 pF)。单片机MSP430F149集成的12位A/D转换器对输出电压进行采样,并通过I/O端口对MS3110内部寄存器进行设置。数据经采样后通过串口传送到上位机进行处理、实时显示、存储等。上位机由普通微机构成。

2 系统硬件设计
2.1 MS3110简介及寄存器设置
MS3110是Irvine Sensor公司生产的具有极低噪声的通用电容检测芯片。它采用CMOS工艺,工作电压为+5 V,测量灵敏度为,集成的补偿电容等参数均可以通过寄存器控制。其基本测量原理为:对被测电容与参考电容同时以相反时序充放电,通过电流积分、低通滤波、放大等将被测电容与参考电容差值转换为电压输出。MS3110内含一个60位的寄存器和100位的EEPROM。可通过单片机MSP430F149的I/0口对其EEFROM编程,或使MS3110工作在测试状态直接对寄存器进行编程。通过这些设置可对MS3110内部各个模块的参数进行精确的调节。
MS3110原理框图如图2所示。MS3110主要由电容补偿电路、电荷积分电路、低通滤波器以及运算放大器组成。

其中,CSlIN、CS2IN为被检测电容,CSl、CS2为MS3110内部的可调电容。通过对内部寄存器进行设置,CS1可在O~1.197 pF范围内调节,CS2可在0~9.709pF范围内调节。CF为电荷积分器的积分电容,可在O~19.437 pF范围内调节。以上3个可调节电容的调节步进均为19 fF。低通滤波器的带宽可在O.5~8 kHz范围内调节,可调增益GAIN可选择2或4。
另外,参考电压VREF、空载输出电压Vout等也可以通过寄存器进行精确调节。其空载输出电压的计算公式如下:
Vout=GAIN×V2P25×1.14×(CS2T-CS1T)/CF+VREF (1)
式中:CSlT=CS1IN+CSl,CS2T=CS2IN+CS2;本系统中可调整的内部增益GAIN取2;V2P25为芯片参考电压输出,默认值为2.25 V;参考电压VREF可选O.5 V与2.5 V两个值,本系统中选取O.5 V。由于烧写EEPROM需要额外的16 V电压,本系统中将TEST引脚拉低使芯片处于测试状态,通过I/O即可直接更改其寄存器。由于掉电后寄存器数据将丢失,所以每次上电后都需要对所有的寄存器进行初始化。需要特别指出的是,MS3110数据手册中给出的写寄存器时序图中,将数据输入时钟SCLK周期标为固定值2μs。在实验中我们发现,周期大于2μs时均可成功设置。
2.2 MSP430F149简介及通信接口设计
系统使用MSP430F149集成的12位A/D转换器进行A/D转换。MSP430F149在1 MHz的时钟频率下运行时,芯片的电流在200~400μA左右;在等待方式下,耗电仅为O.7μA;在节电方式下,电流最低可达0.1 μA。集成的12位A/D转换器具有较高的转换速率,最高可达200 kbps,能够满足大多数数据采集应用,为系统的单片解决方案提供了极大的方便。
MSP430F149集成的A/D转换器可采用内部2.5 V参考电压或外部参考电压,但其内部参考电压准确性较差,在本系统中将MS3110的2.25 V参考电压输出作为A/D转换器的参考电压。低功耗单片机与集成A/D转换器的采用保证了系统拥有较低的功耗。
与上位机的通信接口采用MSP430F149集成的串行接口,通过MAX3232芯片转换为三线RS232接口与计算机串口直接相连。
3 系统软件设计
系统软件包括单片机软件与上位机软件两部分。
3.1 单片机软件设计
采用IAR Assembler for MSP430集成开发环境,使用C语言编写了单片机部分的程序,主要包括系统初始化、测量芯片寄存器初始化、测量与数据传输等。单片机软件流程如图3所示。

单片机初始化包括单片机I/O初始化、串行口参数初始化、A/D转换器初始化,以及与上位机通信接收系统参数等。MS31lO初始化是通过单片机I/O对MS3110内部寄存器进行初始化,包括参考电容值、可调增益、初始电压等参数。采样开始后,单片机按照设定采样率进行采样;采样结束后,将数据经转换后传送给上位机进行处理、显示与存储。
3.2 上位机软件设计
采用VC++6.0软件和C++语言编写系统的上位机软件。软件功能主要包括设置参数,与下位机通信,数据实时图形化显示、存储和读取等。上位机软件界面如图4所示。

4 精度测试与分析
进行测试前,首先应对电路的初始输出进行校准。方法如下:将CSl、CS2设置为O,使用用高精度电压表对MS3110芯片输出电压进行测量,输出为O.497 192 V,将式(1)中的VREF修正为0. V。
在电路板CS2IN位置上焊接一个1.8 pF多层陶瓷电容,用于模拟外部电容式传感器;芯片内部可调电容CS2由O逐步步进到342 fF,以模拟传感器电容的变化,步进值为19 fF。具体寄存器参数设置如下:CSl设为O,为CF设9.728 pF,可调增益GAIN设置为2,V2P25设为2.25 V,其他参数均取手册推荐值。通过实验测得,当CS2取O时,测量值为1.960 021 pF。与电容标称值的差异主要是由电容本身容差与电路的分步电容引起的。由式(1)可得:
CS2=(Vout-VREF)CF/(GAIN×V2P25×1.14) (2)
代入具体数值可得:
CS2=(Vout-0.497 192)×9.728/5.13 (3)
其中,Vout=(A/D采样值/4 095)×2.25。精度测试实验结果如表1所列(实测容值为10次测量的均值)。

测试结果表明,该电容式传感器检测系统具有较高的检测精度,平均误差仅为0.879 fF,最大绝对误差小于1.6 fF。由于MSP430F149集成的A/D转换器为12位,当CF取9.728 pF时,系统对电容的分辨率只有1.042fF。可见,A/D转换器的分辨率是制约检测精度的重要因素。在对系统进行改进时,可考虑采用更高位数的A/D转换器。
结语
本文基于电容检测芯片MS3110设计了一款电容式传感器检测系统,给出了设计要点和需要注意的问题。该系统具有较高的测试精度,可用于电容式传感器检测与研发。
电容式传感器的电路图:电容式传感器工作原理  第2张

电容式传感器的电路图:电容式的传感器的工作原理图

描述
  在石油、钢铁、电力、化学等生产工艺过程中压为是非常重要的参数。此外,在机械制造技术方面,从小批量生产到连续程序控制.从小规模的设备到大规模的成套设备和不断发展的多功能的成套设备.都需要大量的压力传感器。为厂使这些复杂化、大规模化的成套设备能安全运转,对压力传感器的可靠性和稳定性的要求也越来越高.
  下面就性能良好,可靠性高的电容式传感器加以叙述,如下图。
  
  测量压力有表压力及绝对压力测量二种方式。表压测量采用以大气压为基准测容器内压力的方法。绝对压力的测量是采用以绝对真空为基准而测容器内压力的方法。二者的基本原理相同,所不同的是表压传感器将低压例制成对照大气开口的结构;而绝对压力测量则把低压设在真空室的结构.对高压和低压两例的接触溶液膜加压后,通过密封液加到感压膜上,感压膜(可变电极)接着高压侧和低压侧的压力差成正比地改变位置,感压膜的位移,使膜与两侧固定电极之间形成路电容运差,这个静电容放差位经电路转换、放大后就变成4-20mADc的输出信号。
  该传感器的特点:
  1、具有能实现高可可靠性的简单盒状结构;
  2、具有0.2%、50度的高温特性;
  3、小型轻量和耐振性强
  4、测量范围宽.
  5、温度范围宽
  6、内有指示针
打开APP阅读更多精彩内容

下一篇: PLC、DCS、FCS三大控

上一篇: 电气控制线路图控制原

推荐产品

更多