发布日期:2022-10-09 点击率:29
从MEMS陀螺仪的应用方向来看,陀螺仪能够测量沿一个轴或几个轴运动的角速度,可与MEMS加速度计(加速计)形成优势互补,如果组合使用加速度计和陀螺仪这两种传感器,设计者就能更好地跟踪并捕捉三维空间的完整运动,为最终用户提供现场感更强的用户使用体验、精确的导航系统以及其它功能。
要准确地描述线性和旋转运动,需要设计者同时用到陀螺仪和加速度传感器。单纯使用陀螺仪的方案可用于需要高分辨率和快速反应的旋转检测;单纯使用加速度计的方案可用于有固定的重力参考坐标系、存在线性或倾斜运动但旋转运动被限制在一定范围内的应用。但同时处理直线运动和旋转运动时,就需要使用陀螺仪和加速度计的方案。
此外,为让设计和制作的陀螺仪具有较高的加速度和较低的机械噪声,或为校正加速度传感器的旋转误差,一些厂商会使用磁力计来完成传统上用陀螺仪实现的传感功能,以完成相应定位,让陀螺仪术业有专攻。这表明,混合的陀螺仪、加速度计或磁感应计结合的方案正成为MEMS陀螺仪技术应用的趋势。若只使用传统的加速度计,用户得到的要么是反应敏捷的但噪声较大的输出,要么是反应慢但较纯净的输出,而如将加速度计与陀螺仪相结合,就能得到既纯净又反应敏捷的输出。
加速度传感器是惯性导航和惯性制导系统的基本测量元件之一,加速度计本质上是一个振荡系统,安装于运动载体的内部,可以用来测量载体的运动加速度,并通过对加速度积分,知道载体的速度和位置等信息。因此,加速度传感器的性能和精度直接影响导航和制导系统的精度。MEMS类加速度计的工作原理是当加速度计连同外界物体(该物体的加速度就是待测的加速度)一起作加速运动时,质量块就受到惯性力的作用向相反的方向运动。
质量块发生的位移受到弹簧和阻尼器的限制,通过输出电压就能测得外界的加速度大小。目前该设备已开始被较广泛地应用于智能手机、游戏手柄等领域。
下一篇: PLC、DCS、FCS三大控
上一篇: 超声波距离传感器设计