当前位置: 首页 > 工业控制产品 > 自动化控制 > 模块电源 > AC-DC模块电源

类型分类:
科普知识
数据分类:
AC-DC模块电源

AC-DC电源设计要点剖析

发布日期:2022-04-17 点击率:79

滤波器和PFC输出电容中常见的高峰值电流得以减小。输出PFC大电容受益于纹波电流消除是因为流经等效串联电阻(ESR)的AC RMS电流减小。另外,由于升压MOSFET在依赖于AC线的零电压开关(ZVS)下关断,在零电流开关(ZCS)下导通,故可以进一步提高效率。对于 350W的交错式BCM PFC设计,MOSFET散热器可去掉,如图1所示。另一方面,CCM PFC设计中使用的升压MOSFET则易受与频率相关的开关损耗的影响,而开关损耗与输入电流及线电压成比例。通过在零电流时关断交错式BCM升压二极管,可避免反向恢复损耗,从而允许使用成本低廉的快速恢复整流二极管,而且在某些情况下可以无需散热器。PFC转换器工作时的固有特点是:输出电压调节采用电压型PWM控制时9稳态占空比Du为常数(即导通时间Ton为常数),输人电流接近于正弦波。因此,控制电路中无须乘法器和电流控制,就可以实现功率因数校正。

  对于隔离式DC-DC转换器设计,半桥是一个很好的拓扑选择,因为它有两个互补驱动的初级端MOSFET,且最大漏源电压受限于所加的DC输入电压。LLC通过可变频率控制技术,利用与功率水平设计相关的寄生元素来实现ZVS。不过,由于经调节的DC输出只使用电容滤波,这种拓扑最适合的是输出纹波较低、输出电压较高的应用。

  AHB主要用于高性能模块(如CPU、DMA和DSP等)之间的连接,作为SoC的片上系统总线,它包括以下一些特性:单个时钟边沿操作;非三态的实现方式;支持突发传输;支持分段传输;支持多个主控制器;可配置32位~128位总线宽度;支持字节、半字节和字的传输。AHB系统由主模块、从模块和基础结构 AHBInfrastructure)3部分组成,整个AHB总线上的传输都由主模块发出,由从模块负责回应。基础结构则由仲裁器、主模块到从模块的多路器、从模块到主模块的多路器、译码器(decoder)、虚拟从模块(dummy Slave)、虚拟主模块(dummy Master)所组成。

  对于300W,12V DC-DC转换器,AHB是一种高效的选择。由于初级电流滞后于变压器的初级电压,故可为两个初级MOSFET的ZVS提供必要条件。类似于LLC,利用 AHB实现ZVS的能力也取决于对电路寄生元素的透彻了解,比如变压器漏电感、匝间电容和分立式器件的结电容。相比LLC控制中采用的可变频率控制方法,固定频率方案可以大大简化次级端自驱动同步整流(SR)的任务。自驱动SR的栅极驱动电压很容易由变压器次级端推算出来。增加一个低端MOSFET驱动器,比如图2所示的双路4A FAN3224驱动器,就可以精确给出通过MOSFST米勒平坦区的电平转换和高峰值驱动电流。

  FAN3224,利用 倍流整流器实现自驱动同步整流(SR)

  图2.FAN3224,利用 倍流整流器实现自驱动同步整流(SR)。

  这种倍流整流器可用于任何双端电源拓扑和大DC电流应用,它具有好几个突出的特性。首先,其次级端由一个简单绕组构成,可简化变压器结构。其次,由于所需的输出电感被分配在两个电感器上,因大电流流入次级端而产生的功耗得到更有效的分布。第三,作为占空比(D)的函数,两个电感纹波电流彼此抵消。抵消掉的两个电感电流之和拥有两倍于开关频率的视在频率(apparent frequency),故允许更高的频率,此外流入输出电感的峰值电流更低。

  加在次级端整流器上的电压不对称可能是AHB的缺点之一。当AHB在其限值D=0.5附近工作时,加载的SR电压几乎可达到匹配。然而,更合理的方案是,通过对变压器的匝数比进行设计,使D在额定工作期间保持在0.25。

  调节器之后是一个带自驱动SR的不对称半桥DC-DC转换器,如图1所示。

  表1.小型AC-DC电源设计规格

  小型AC-DC电源设计规格

  表1中的规格是对全部设计要求的简单小结。主要设计目标如下:

  1.在尽可能宽的范围上获得最大效率。

  2.实现尽可能小的设计尺寸。

  3.散热器的使用和尺寸最小化。

12下一页

分享到:微信QQ空间新浪微博腾讯微博

0 收藏(0) 打印

免费订阅 ElecFans 信息速递,掌握即时科技产业动态与最新技术方案


下一篇: PLC、DCS、FCS三大控

上一篇: 索尔维全系列Solef?PV

推荐产品

更多