发布日期:2022-10-25 点击率:64
<script
var cpro_id = "u1457042"; <iframe id="iframeu1457042_0" ncam?rdid=1457042&dc=2&di=u1457042&dri=0&dis=0&dai=3&ps=425x362&dcb=BAIDU_SSP_define&dtm=BAIDU_DUP_SETJSONADSLOT&dvi=0.0&dci=-1&dpt=none&tsr=0&tpr=1459701315777&ti=%E9%AB%98%E5%8E%8B%E6%96%AD%E8%B7%AF%E5%99%A8%E6%8B%92%E5%88%86%E6%95%85%E9%9A%9C%E4%B8%8E%E5%8E%9F%E5%9B%A0%E5%88%86%E8%A7%A3_%E7%94%B5%E6%B0%94%E8%87%AA%E5%8A%A8%E5%8C%96%E6%8A%80%E6%9C%AF%E7%BD%91&ari=1&dbv=0&drs=1&pcs=645x335&pss=970x426&cfv=0&cpl=22&chi=50&cce=true&cec=gbk&tlm=1402384543<u=http%3A%2F%2Fwww.dqjsw.com.cn%2Fdiangongdianzi%2Fdianlidiangong%2F59971.html&ecd=1&psr=1366x768&par=1366x728&pis=-1x-1&ccd=24&cja=false&cmi=34&col=zh-CN&cdo=-1&tcn=1459701316&qn=7728a33a3b5a9180&tt=1459701315750.252.347.348" vspace="0" hspace="0" marginwidth="0" marginheight="0" scrolling="no" style="border:0; vertical-align:bottom;margin:0;" allowtransparency="true" align="center,center" width="200" height="200" frameborder="0"> |
摘要:本文结合高压断路器拒分故障统计及造成电网火烧连营事故和大面积长时间停电,解析了拒分故障中隐含有继电保护整定与原理误区的原因。针对保护方式/保护整定的时间/电流/选择性/灵敏度等因素,定量分析了其误症细节,理出并归纳了继电保护整定原理的更新要点。简单经济实用。
1高压断路器拒分故障与原因分解
高压断路器的拒分故障影响电网的控制和保护,特别是对电网短路保护的失效给电网带来的损失是很大的,严重的甚至引起火烧连营事故造成大面积长时间停电。短路保护性能的好坏很难实地实战演习验证,容易造成麻痹侥幸思维,平时很少短路都认为安然无事,一旦短路失保就会出大事。资料显示全国电网每年仅火烧连营事故就有近百面开关柜被烧毁。2004年火烧连营事故又有上升趋势[2]。近年来世界多个按理说是技术先进的发达国家也都有发生大面积长时间停电和火烧连营事故。这就不是偶然的现象了,其原因值得深思和细究。笔者认为这里面隐含更深层的继电保护整定与原理误区的原因,并非都归结为高压断路器厂家制造质量这么简单。
根据国家电网公司统计1998~2002年6~500kV高压断路器拒分故障占总故障的14.5%,排各类故障的第二位。2004年6~500kV高压断路器拒分故障占总故障的15.2%,排各类故障的第三位。2006年12kV以上高压断路器的拒分拒合故障,共占总故障的14.5%,排名各类故障的首位。40.5kV高压断路器拒分故障2004年占总故障的18.2%,2005年占总故障的29.6%。可见其故障率还不小!
电力部门在事故统计中一般都习惯将拒分故障的原因归结为断路器,有时还以拒动故障来归类包括拒分与拒合故障。对短路保护来说拒分影响最大,应该分开统计拒分、拒合,是断路器故障拒分,还是继电装置主保护拒动或后备保护都拒动造成的拒分。后备保护还有低电压闭锁拒动、差动保护拒动、距离保护拒动,有无火烧连营事故,等等。各占比例是多少,才便于分析真正原因。在高压电网保护中,高压断路器与继电保护装置是分开制造选配安装的,最后由电力部门来组合整定,形成一个完整的保护系统。这两个部分都有可能造成拒分故障。从现在的统计中看不出继保装置拒动造成的拒分故障和火烧连营故障的比例,也就找不出高压电网火烧连营事故上升的真正元凶。或许另有内部统计,通过仔细分析都应该能得出问题所在。
执行开断任务的断路器拒分和拒合是开关制造厂的问题,可由继保信号继电器有无发出动作信号来判断。有动作信号发出,就是断路器拒分;没有动作信号发出,就是继保装置整定失保拒动,造成断路器无法执行分断的拒分。二者是有本质区别的,不能混为一谈。继保装置拒动有主保护拒动和后备保护拒动,是继保装置和电站整定的问题,与断路器制造厂无关。主/后备保护拒动和保护时间过长往往带来火烧连营事故。而由断路器拒分造成火烧连营事故的机率很小,因为断路器的开断时间<0.1s,一般为0.06s,上下级断路器同时都出现故障拒分的可能性不大。第三级断路器远后备保护的动作时间应该为0.5~0.7s时才不至于火烧连营。所以出现火烧连营事故,一般都是继保装置拒动和保护动作时间太长引起的,应该都是电站的装置整定问题和责任。这一点或许连统计拒分故障的电站和部门都不会想到,问题竟然会出在自己的继保系统。
断路器的开断性能应该由厂家的型式试验和出厂试验来保证,并出具试验报告;继电保护装置及整定的各种主/后备保护时间电流安秒动作特性,应当在安装整定调试时进行二次回路通电验证,出具验证数据报告。严格具体地讲必须保证主保护能在末端为最小单相短路电流时0.1s内动作,后备保护应在同样电流时0.3~0.5s内动作。国际电工IEC62271-200:2003内部故障电弧试验标准推荐的开关设备燃弧时间优选值为1s/0.1s,即远后备保护的动作时间都不能超过1s,最好控制在0.7s以内。否则极易造成烧毁开关设备和火烧连营事故!事实上,我国和世界上包括一些发达国家的许多电站目前都达不到这个要求。这就是继电保护整定原理之误区带来的结果[5]。
国外资料显示开关设备的燃弧时间从0.1s每提高0.1s,开关柜的成本要增加10%。提高到1s时,将增加开关柜的成本100%。如果电网短路保护时间按现在的4s来要求,开关柜的成本将无法承受,用户也接受不了。如果保护时间再延长,那造价将是个天文数字!是不可能实现的。所以继电保护原理中用长延时来作短路主保护,那根本就是一个主观的误导和天真的臆想!短路保护的原则应当尽量减少动作时间,故障电弧的烧损就小,供电的恢复时间也就短,利国利民利业。过去的短路保护原理缺乏与实际制造相结合的系统经济观念。
低压断路器由于是和继保装置整体制造整定,才由制造厂实事求是地找到了一个解决途径:整定简单实用的三段式保护,避免了低压系统火烧连营事故。而高压断路器与继保装置是分开制造,致使电力部门过于拘泥信赖继电保护整定原理的误区,其保护方式繁琐复杂又不实用,整定值宽泛不精,才造成了火烧连营事故居高不下。发达国家目前也没有走出这个怪圈,这从国际电工标准IEC60255-3、英国标准BS142和美国标准ANSIC37.112以及中国国家标准GB/T14598.7-3的长延时转盘仿真特性还在应用于微机控制的短路保护,就能说明这一点。这样的微机保护只能叫作“危机”保护。不要以为有了微机保护就万事大吉、高枕无忧了,微机控制又不是万能的神仙,它的原理也是由人来设计的,也还是要由人去整定的好,才能起到应有的保护作用。客观现实是冷酷的火烧连营事故和造成大面积长时间停电,应当认真坚决地去杜绝它。是什么问题就解决什么问题,观念的转变才是最根本的转变。对洋技术应当分析消化和扬弃。
2高压断路器拒分故障的隐含因素
继电保护装置与整定达不到在末端最小单相短路电流时,主保护<0.1s/后备保护0.3~0.5s/远后备保护0.5~0.7s动作特性要求的原因是:继电保护整定原理一直采用长延时作短路主保护和后备保护致使时间太长;并按最大短路电流来整定瞬时保护与短延时保护,造成保护死区等于没有瞬时/短延时保护和后备保护。这就从时间和电流两个参数上都丧失了短路保护的作用[5]。令人遗憾的是,目前与此有关的大学仍然还在教授这些内容,误人子弟。国内外的微机保护装置也都不具备这种明确的保护功能。短路时造成火烧连营事故和大面积长时间停电也就不奇怪了。
例如[6]:2008.3.21日,北京电网220kV草桥变电站停电事故,导致该站和下属3座110kV变电站全停,另外2座220kV变电站和4座110kV变电站切换电源运行。涉及16座开闭站和2个重要用户,大面积停电,损失负荷78MW。事故由并联运行的右电源侧断路器接地闪络引起,由上级A站和N站都是全微机系统保护的距离保护和零序保护来切除故障,动作时间为0.546s+重合闸后加速保护0.061s,重合闸间隔1.117s。即开关烧损时间为0.607s,致使开关烧损严重只能更换。为什么距离保护和零序保护首次动作的时间是0.546s(比短延时后备保护的0.3s还长)?后加速保护时也才达到0.061s?主保护的时间这么长,后加速还有何意义?这是否“2套保护均正确动作”?按理两次动作的时间都应该是瞬时0.06s才对,开关烧损时间应该是0.12s,对比一下0.607s,可减少4/5的烧损!或许稍加修复还能使用,不必更换。这对用户自己减小损失恢复供电也是有益的。虽然事故原因归结给厂家制造安装不当,但烧损的程度应该与电站保护系统整定原理有关。试想有哪一个厂家的开关设计能耐受0.607s的内部故障电弧不被烧毁?是否现代微机保护的整定原理就一定没有问题?值得大家深思细琢。
继电保护整定原理对长延时/短延时/瞬时保护的功能作用即谁管短路保护和过载保护,谁应该是主保护和后备保护都分界不清,对保护灵敏度的取值依据也不明确,对如何解决同线路首尾断路器的保护选择性问题更是手足无策,这些都导致了保护整定原理的扭曲。
长延时保护的时间很长,一般都>1s,根本不适合短路保护,只能用于过载保护,以避开电机的启动时间。电流整定为1倍额定电流In,动作倍数在1.2~6倍。它有后备保护的功能,但对短路保护的速断已失去作用。
短延时保护延时0.2/0.4/0.6s的作用就是能上下级配合即保证选择性,只能是用于短路后备保护,不能作主保护。它应该按额定电流来整定,不能按短路电流整定会造成保护死区。线路一般按3~4倍In整定,以避开尖峰涌流(一般为2~3倍In)。上下级电流整定值应错开至少1.1倍才能有选择性,加上短延时来配合后备选择性。
瞬时保护的速断时间<0.1s就决定了它才应该是短路的主保护,它也应按额定电流来整定以消除保护死区。线路一般按5倍In整定即可,以避开尖峰涌流。上下级电流整定值应错开至少1.25倍,才能保证上下级和同线路首尾断路器有选择性。
保护的选择性与继电器返回系数(一般0.85)和继保装置元件的精度误差(一般≯5%)有关。综合取至少错开1.25倍,才能使下级保护动作后,上级保护能返回。
保护灵敏度Sp的取值与继保装置精度误差有关,应当在末端最小单相短路电流时,远后备保护能达到1.1,即总的精度误差<10%,就能保证可靠动作。主保护的灵敏度自然越大越好。目前保护原理按最大短路电流来整定是达不到>1.1的,都是<1,即有死区和拒分。
其它的保护如差动保护和低电压闭锁保护,都是由于保护原理的误区导致瞬时保护有死区失效后增加的保护,实属多余。如果瞬时保护没有死区,它们也就失去了意义。这从整定值可以看出:差动保护整定在内部短路0.4~4.5倍In范围,相当于外部加1倍In为1.4~5.5倍In时动作。我们可以直接用瞬时速断保护,整定5倍In动作不是更简单么。差动保护的整定值低于额定电流和尖峰涌流以内时,其鉴别装置很复杂带来误动的风险也随之而来,时有报道差动保护发生误动。过去瞬时保护整定为额定电流In的30倍左右(短路电流一般是额定电流的几十倍),造成保护死区很大甚至延伸到变压器内部,才发明了差动保护,觉得差动保护有优势。当保护原理被纠正后,瞬时保护按避开尖峰涌流整定也在5倍In范围,没有保护死区了,差动保护当然就失去了优越性和存在的价值。
只要电流大于正常允许值,瞬时保护就动作,以能避开尖峰涌流为底线,整定值越小越有利,这也是保护的本意所在。设备线路是按额定电流设计的,短路电流非常大会烧毁设备线路,只能用保护来切除。如果短路电流或内部短路电流比额定电流还小,那就不需要保护动作。如果在尖峰涌流以内(一般≯4倍In),可以用短延时保护,整定值应有所区别,如:瞬时5倍/短延时3~4倍/或第二套短延时1.5~3倍In(0.5~0.7s)。能用最简单的瞬时保护解决短路问题不是很好么,没有必要去舍简求繁地沿用本来就属于附加多余的差动保护,甚至将原本用于变压器内部短路的差动保护去作母线保护。母线的阻抗远远小于变压器阻抗,如此小的阻抗范围,整定值如何来依据确定才是合理的?它相当于用最繁琐复杂的差动保护去保护一个点,有没有必要和实用价值?而且差动保护的范围仅限一段。
3继电保护整定原理的更新要点
1)、推翻了百年来用长延时作短路保护和按最大短路电流来整定瞬时保护的原理误区。应以瞬时和短延时为短路的主/后备保护,依据额定电流来整定保护消除死区。可以避免火烧连营事故,简单经济实用。
2)、提出了依据额定电流来整定短路保护以后,低电压闭锁保护和差动保护都成为多余,线路距离保护的范围会增加几倍甚至全程。
3)、指出依据额定电流整定的另一优点:受系统运行方式变化的影响小,尤其在最小运行方式时,保护的可靠性高。
4)、指明根据一般上下级额定电流的级差范围来分析,短延时后备保护只能是每两级配合。整定值要由下级的整定电流折算成上级In的倍数,一般为3~4倍。建议设第二套短延时保护,整定值1.5~3倍/0.5~0.7s作第三级的远后备保护。
5)、提出保护灵敏度Sp由原来按短路电流整定的1.25~2(还保护不到末端),可以降低到远后备保护为1.1,总的精度误差已为10%。由此也引定出:电流互感器不能使用10P的保护精度等级,应该≯5P。
6)、提出短路冲击电流有效值Ish对保护灵敏度的可靠性有利,并计算出在速断动作时间0.08s内的平均值为1.22Ik。
7)、指出返回系数Kre在整定计算公式中有混淆,上级后备保护时要考虑,末端保护整定时不用。可提高后备保护的灵敏度。
8)、填补推导得出常用的低压TN-S系统最小单相短路电流的计算值为:IK⑴min≈0.7IK⑶min。 (责任编辑:电工网)
下一篇: PLC、DCS、FCS三大控
上一篇: 索尔维全系列Solef?PV